Classification of matrix systems of $P_{2}-P_{6}$ type with Okamoto integral

Vladimir V. Sokolov ${ }^{1}$

L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russia, and UFABC, Sao Paulo, Brazil

Chernogolovka 16.02.2022

- Sokolov V.V., and Wolf T., Non-commutative generalization of integrable quadratic $O D E$-systems, Lett. in Math. Phys., 2020, 110(3), 533-553.
- Kawakami H., Matrix Painlevé systems, Journal of Mathematical Physics, 2015, 56(3), 033503
- Adler V.E. and Sokolov V.V., On matrix Painlevé II equations, Theor. and Math. Phys. 2021, 207(2), 560-571, arXiv nlin, 2012.05639
- Bobrova I. A. and Sokolov V. V., On matrix Painlevé IV equations, math. arXiv: 1911.03320

Introduction

The Okamoto polynomial Hamiltonian of the sixth Painlevé equation is given by:

$$
\begin{gathered}
z(z-1) H=u^{3} v^{2}-u^{2} v^{2}-\kappa_{1} u^{2} v+\kappa_{2} u v-\kappa_{3} u+ \\
z\left(-u^{2} v^{2}+u v^{2}+\kappa_{4} u v+\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) v\right)
\end{gathered}
$$

where k_{i} are arbitrary constants, $z \in \mathbb{C}$.
The corresponding Hamiltonian system is

$$
\left\{\begin{array}{l}
z(z-1) \frac{d u}{d z}=2 u^{3} v-2 u^{2} v-\kappa_{1} u^{2}+\kappa_{2} u \\
+z\left(-2 u^{2} v+2 u v+\kappa_{4} u+\kappa_{1}-\kappa_{2}-\kappa_{4}\right), \tag{1}\\
z(z-1) \frac{d v}{d z}=-3 u^{2} v^{2}+2 u v^{2}+2 \kappa_{1} u v-\kappa_{2} v+\kappa_{3} \\
+z\left(2 u v^{2}-v^{2}-\kappa_{4} v\right),
\end{array}\right.
$$

The variable u satisfies the Painlevé- 6 equation.

The system has the form

$$
\left\{\begin{array}{l}
f(z) \frac{d u}{d z}=P_{1}(u, v)+z Q_{1}(u, v) \tag{2}\\
f(z) \frac{d v}{d z}=P_{2}(u, v)+z Q_{2}(u, v)
\end{array}\right.
$$

while the Hamiltonian has the following structure $f(z) H=H_{1}+z H_{2}$, where P_{i}, Q_{i}, H_{i} are polynomials in u, v. All other scalar Painlevé systems and their Hamiltonians have the same structure.

Let us consider the system

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=P_{1}(u, v)+z Q_{1}(u, v) \tag{3}\\
\frac{d v}{d t}=P_{2}(u, v)+z Q_{2}(u, v)
\end{array}\right.
$$

where we regard z as a parameter. We call (3) auxiliary autonomous system for (2).

It follows from the fact that (1) is a Hamiltonian system with the Hamiltonian H that

$$
\begin{equation*}
J=H_{1}+z H_{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
H_{1}=u^{3} v^{2}-u^{2} v^{2}-\kappa_{1} u^{2} v+\kappa_{2} u v-\kappa_{3} u \\
H_{2}=-u^{2} v^{2}+u v^{2}+\kappa_{4} u v+\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) v
\end{gathered}
$$

is an integral of motion for system (3) i.e. $\frac{d J}{d t}=0$. We call the function J the Okamoto integral.

For any N the system

$$
\left\{\begin{array}{l}
u_{\tau}=J^{N} u_{t} \tag{5}\\
v_{\tau}=J^{N} v_{t}
\end{array}\right.
$$

is an infinitesimal symmetry.

Consider systems of the form (3), where P_{i} and Q_{i} are non-commutative polynomials given by

$$
\begin{gathered}
P_{1}(u, v)=a_{1} u^{3} v+a_{2} u^{2} v u+a_{3} u v u^{2}+\left(2-a_{1}-a_{2}-a_{3}\right) v u^{3} \\
\quad+c_{1} u^{2} v+\left(-2-c_{1}-c_{2}\right) u v u+c_{2} v u^{2}-\kappa_{1} u^{2}+\kappa_{2} u, \\
Q_{1}(u, v)=f_{1} u^{2} v+\left(-2-f_{1}-f_{2}\right) u v u+f_{2} v u^{2} \\
\quad+h_{1} u v+\left(2-h_{1}\right) v u+\kappa_{4} u+\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right),
\end{gathered}
$$

and

$$
\begin{aligned}
P_{2}(u, v) & =b_{1} u^{2} v^{2}+b_{2} u v u v+b_{3} u v^{2} u+b_{4} v u^{2} v+b_{5} v u v u \\
& +\left(-3-\sum b_{i}\right) v^{2} u^{2}+d_{1} u v^{2}+\left(2-d_{1}-d_{2}\right) v u v \\
& +d_{2} v^{2} u+e_{1} v u+\left(2 \kappa_{1}-e_{1}\right) u v-\kappa_{2} v+\kappa_{3} \\
Q_{2}(u, v) & =g_{1} u v^{2}+\left(2-g_{1}-g_{2}\right) v u v+g_{2} v^{2} u-v^{2}-\kappa_{4} v .
\end{aligned}
$$

We assume that all coefficients are complex constants. If $f(z)=z(z-1)$, then the corresponding system (2) is a natural non-commutative generalization of the Painlevé-6 system.

We postulate the existence of non-abelian integral of motion of the form

$$
\begin{equation*}
J=H_{1}(u, v)+z H_{2}(u, v), \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{1}(u, v) & =p_{1} u^{3} v^{2}+p_{2} u^{2} v u v+p_{3} u^{2} v^{2} u+p_{4} u v u^{2} v+p_{5} u v u v u \\
& +p_{6} u v^{2} u^{2}+p_{7} v u^{3} v+p_{8} v u^{2} v u+p_{9} v u v u^{2} \\
& +\left(1-\sum p_{i}\right) v^{2} u^{3}+q_{1} u^{2} v^{2}+q_{2} u v u v+q_{3} u v^{2} u+q_{4} v u^{2} v \\
& +q_{5} v u v u+\left(-1-\sum q_{i}\right) v^{2} u^{2}+r_{1} u^{2} v+r_{2} u v u \\
& +\left(-\kappa_{1}-\sum r_{i}\right) v u^{2}+s_{1} u v+\left(\kappa_{2}-s_{1}\right) v u-\kappa_{3} u
\end{aligned}
$$

$$
\begin{aligned}
H_{2}(u, v) & =t_{1} u^{2} v^{2}+t_{2} u v u v+t_{3} u v^{2} u+t_{4} v u^{2} v+t_{5} v u v u \\
& +\left(-1-\sum t_{i}\right) v^{2} u^{2}+x_{1} u v^{2}+x_{2} v u v+\left(1-\sum x_{i}\right) v^{2} u \\
& +y_{1} u v+\left(\kappa_{4}-y_{1}\right) v u+\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) v
\end{aligned}
$$

As a result, we found 18 non-abelian systems (2) of Painlevé type. A transformation group acts on the set of these system. There are 3 orbits of the group action and three non-equivalent systems corresponding to these orbits.

All these systems are not Hamiltonian and therefore our approach cannot reconstruct the known non-abelian Hamiltonian P_{6} system. However, we obtain an interesting class of integrable P_{6} systems.

To justify their integrability, we find the isomonodromic Lax representations of the form

$$
\begin{equation*}
\mathcal{A}_{z}-\mathcal{B}_{\lambda}=[\mathcal{B}, \mathcal{A}] \tag{7}
\end{equation*}
$$

for these systems.

Non-abelian ODEs

The systems have the form

$$
\begin{equation*}
\frac{d x_{\alpha}}{d t}=F_{\alpha}(\mathbf{x}), \quad \mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \tag{8}
\end{equation*}
$$

where x_{1}, \ldots, x_{N} are generators of the free unital associative algebra \mathcal{A} over \mathbb{C}. Actually, (8) is a notation for the derivation d_{t} of \mathcal{A} such that $d_{t}\left(x_{i}\right)=F_{i}$. The element $d_{t}(z)$ is uniquely determined for any element $z \in \mathcal{A}$ by the Leibniz identity.

Usually, the first integrals of a system (8) are some elements of the quotient vector space $\mathcal{A} /[\mathcal{A}, \mathcal{A}]$, which is a formalisation of integrals of the form $\operatorname{trace}\left(f\left(x_{1}, \ldots, x_{N}\right)\right)$ in the matrix case $x_{i}(t) \in M a t_{m}$. For the Hamiltonian non-abelian systems the Hamiltonians are first integrals of this kind. However in this paper we are dealing with the first integrals that are elements of \mathcal{A}.

Definition An element $j \in \mathcal{A}$ are called a first integral of (8) iff $d_{t}(j)=0$.

For non-abelian systems with two variables u and v a special integral $I=u v-v u$ appears in the following statement:

Lemma A system is Hamiltonian with respect to the canonical symplectic structure i.e. has the form

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=\frac{\partial H}{\partial v} \tag{9}\\
\frac{d v}{d t}=-\frac{\partial H}{\partial u}
\end{array}\right.
$$

where $H \in \mathcal{A}$ and $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$ are non-abelian derivatives iff the system has the first integral I.

Non-abelian partial derivatives $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}$ for arbitrary polynimial $f \in \mathcal{A}$ are defined by the identity

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\ldots+\frac{\partial f}{\partial x_{n}} d x_{n}
$$

where the additional non-abelian variables $d x_{i}$ are supposed to be moved to the right by the cyclic permutations of generators in monomials. Notice that $\frac{\partial}{\partial x_{i}}$ themselves are not vector fields in the nonabelian case.

Example Let $f=u^{2} v u v$. We have
$d f=d u u v u v+u d u v u v+u^{2} d v u v+u^{2} v d u v+u^{2} v u d v$.
Now we make cyclic permutations in monomials to bring all $d u, d v$ to the end in each monomial. We obtain $u v u v d u+v u v u d u+u v u^{2} d v+v u^{2} v d u+u^{2} v u d v$ and, therefore,

$$
\frac{\partial f}{\partial u}=u v u v+v u v u+v u^{2} v, \frac{\partial f}{\partial v}=u v u^{2}+u^{2} v u
$$

Notice that the Hamiltonian H of a system (9) is not a first integral in the sense od our definition.

We assume that the auxiliary system (3) has an Okamoto first integral of the form (6). In both the system and in the integral the variable z plays the role of arbitrary parameter. Using the terminology of the bi-Hamiltonian formalism, we have pencils of two non-abelian dynamical systems and two non-abelian first integrals.

Instead of algebra \mathcal{A} with multiplication $x y$ one can consider the associative algebra with the opposite product $x \star y=y x$. The transition to the opposite multiplication is represented by the involution $\tau: \mathcal{A} \mapsto \mathcal{A}$ defined by

$$
\tau\left(x_{i}\right)=x_{i}, \quad \tau(a x+b y)=a \tau(x)+b \tau(y), \quad \tau(x y)=\tau(y) \tau(x)
$$

where $x, y \in \mathcal{A}, a, b \in \mathbb{C}$. This involution is called transposition.
All properties of integrable systems such as the existence of first integrals, infinitesimal symmetries, Lax representations etc. are invariant with respect to τ.

P_{6} systems

Differentiating the integral with respect to the system, we obtain a polynomial $P(u, v, z)$ of degree 8 . The simplest equations from this system are:

$$
p_{1}=p_{3}=p_{6}=p_{7}=0, \quad p_{2}=1-p_{4}-p_{5}-p_{8}-p_{9}
$$

In turns out that all coefficients of polynomials P_{i}, Q_{i} can be expressed in terms of the Okamoto integral:

$$
\begin{aligned}
& a_{1}=1-p_{4}-p_{5}-p_{8}-p_{9}, \quad a_{2}=1+p_{4}-p_{8}-p_{9} \\
& a_{3}=p_{5}+2 p_{8}+p_{9}, \quad b_{1}=-1+p_{4}+p_{5}+p_{8}+p_{9} \\
& b_{2}=-2+p_{5}+2 p_{8}+2 p_{9}, \quad b_{3}=0, \quad b_{4}=-p_{4}-p_{5}-p_{8} \\
& b_{5}=-p_{5}-2 p_{8}-2 p_{9}, \quad c_{1}=-d_{1}=2 q_{1}+q_{2} \\
& c_{2}=-d_{2}=-2-2 q_{1}-2 q_{2}-2 q_{3}-2 q_{4}-q_{5}, \quad h_{1}=2 x_{1}+x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& e_{1}=2 \kappa_{1}+2 r_{1}+r_{2}, \\
& f_{2}=1-t_{3}+x_{1}+x_{2}-p_{5}-p_{8}-2 p_{9}+2 q_{1}+2 q_{2}+q_{3}+2 q_{4}+q_{5} \\
& f_{1}=-2-t_{3}-x_{1}+p_{4}+p_{5}+2 p_{8}+2 p_{9}-2 q_{1}-q_{2}-q_{3}
\end{aligned}
$$

Equating to zero the coefficients of different monomials of degree 8 in $P(u, v, z)$, we arrive at a system of nonlinear algebraic equations for the variables $a_{i}, i=1,2,3$, $b_{i}, i=1, \ldots, 5 \quad$ and $\quad p_{i}, i=1, \ldots, 9$.

Using the above formulas, we can eliminate a_{i}, b_{i} and $p_{1}, p_{2}, p_{3}, p_{6}, p_{7}$ to obtain a system for $p_{4}, p_{5}, p_{8}, p_{9}$, which is equivalent to

$$
\begin{gathered}
\left(p_{4}-1\right) p_{4}=\left(p_{5}-1\right) p_{5}=\left(p_{8}-1\right) p_{8}=\left(p_{9}-1\right) p_{9}=0 \\
p_{4} p_{5}=p_{4} p_{8}=p_{4} p_{9}=p_{5} p_{8}=p_{5} p_{9}=p_{8} p_{9}=0
\end{gathered}
$$

This system have the following 5 solutions:

$$
\begin{array}{ll}
\text { Case 1: } & p_{4}=0, p_{5}=0, p_{8}=1, p_{9}=0 \\
\text { Case 2: } & p_{4}=0, p_{5}=0, p_{8}=0, p_{9}=1 \\
\text { Case 3: } & p_{4}=0, p_{5}=1, p_{8}=0, p_{9}=0 \\
\text { Case 4: } & p_{4}=1, p_{5}=0, p_{8}=0, p_{9}=0 \\
\text { Case 5: } & p_{4}=0, p_{5}=0, p_{8}=0, p_{9}=0 .
\end{array}
$$

In each case, equating to zero the remaining coefficients in the polynomial $P(u, v, z)$, we obtain a large but rather simple algebraic system for $q_{i}, r_{i}, s_{i}, t_{i}, x_{i}, y_{i}$. This system contains $\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}$ as parameters.

Solving this system in Case 1, we obtain systems 1.1-1.3; systems 2.1-2.3 appear in Case 2; Case 3 produces 3.1- 3.6; systems 4.1-4.3 and 5.1-5.3 correspond Case 4 and Case 5.

All systems contain four arbitrary parameters $\kappa_{1}-\kappa_{4}$. Notice that additional systems that correspond to particular values of parameters do not exist.

Transformation group

The scalar P_{6} system (1) is invariant under the transformations

$$
\begin{array}{rlrl}
r_{1}: & \{z, u, v\} & \mapsto\{1-z, 1-u,-v\}, \\
r_{2}: & \{z, u, v\} & \mapsto\left\{z^{-1}, z^{-1} u, z v\right\}, \\
r_{3}: \quad\{z, u, v\} & \mapsto\left\{z(z-1)^{-1},(z-u)(z-1)^{-1},-(z-1) v\right\} .
\end{array}
$$

These involutions change the parameters in the following way

$$
\begin{gathered}
r_{1}: \quad\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\} \mapsto\left\{\kappa_{1}, 2 \kappa_{1}-\kappa_{2}-\kappa_{4}, \kappa_{3}, \kappa_{4}\right\}, \\
r_{2}: \quad\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\} \mapsto\left\{\kappa_{1}, \kappa_{4}-1, \kappa_{3}, \kappa_{2}+1\right\}, \\
r_{3}: \quad\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, \kappa_{4}\right\} \mapsto\left\{\kappa_{1}, \kappa_{2}, \kappa_{3}, 2 \kappa_{1}-\kappa_{2}-\kappa_{4}+1\right\} .
\end{gathered}
$$

The involutions r_{i} and τ act on the set of eighteen non-abelian systems described above. There are three orbits of this action:

Orbit $1=\{1.1,1.2,1.3,4.1,4.2,4.3\}$,
Orbit $2=\{2.1,2.2,2.3,5.1,5.2,5.3\}$,
Orbit $3=\{3.1,3.2,3.3,3.4,3.5,3.6\}$.

$\mathrm{P}_{5}-\mathrm{P}_{2}$ systems
 P_{5} systems

In the scalar case, the P_{5}-system,

$$
\left\{\begin{array}{l}
z u^{\prime}=2 u^{3} v-4 u^{2} v-\kappa_{1} u^{2}+2 u v+\left(\kappa_{1}+\kappa_{2}\right) u-\kappa_{2}+\kappa_{4} z u \\
z v^{\prime}=-3 u^{2} v^{2}+4 u v^{2}-v^{2}+2 \kappa_{1} u v-\left(\kappa_{1}+\kappa_{2}\right) v+\kappa_{3}-\kappa_{4} z v
\end{array}\right.
$$

has the following Okamoto integral:

$$
J=u^{3} v^{2}-2 u^{2} v^{2}+u v^{2}-\kappa_{1} u^{2} v+\left(\kappa_{1}+\kappa_{2}\right) u v-\kappa_{3} u-\kappa_{2} v+\kappa_{3}+\kappa_{4} z u v .
$$

Note that the system has the structure

$$
\left\{\begin{aligned}
z u^{\prime} & =P_{1}(u, v)+\kappa_{4} z u \\
z v^{\prime} & =P_{2}(u, v)-\kappa_{4} z v
\end{aligned}\right.
$$

We consider the following non-abelian ansatz for the components $P_{1}(u, v)$ and $P_{2}(u, v)$:

$$
\begin{aligned}
& P_{1}(u, v)=a_{1} u^{3} v+a_{2} u^{2} v u+a_{3} u v u^{2}+\left(2-\sum a_{i}\right) v u^{3}+ \\
& c_{1} u^{2} v+\left(-4-c_{1}-c_{2}\right) u v u+c_{2} v u^{2}-\kappa_{1} u^{2}+ \\
& e_{1} u v+\left(2-e_{1}\right) v u+\left(\kappa_{1}+\kappa_{2}\right) u-\kappa_{2} \\
& P_{2}(u, v)=b_{1} u^{2} v^{2}+b_{2} u v u v+b_{3} u v^{2} u+b_{4} v u^{2} v+b_{5} v u v u+ \\
& \left(-3-\sum b_{i}\right) v^{2} u^{2}+d_{1} u v^{2}+\left(4-d_{1}-d_{2}\right) v u v- \\
& d_{2} v^{2} u-v^{2}+f_{1} u v+\left(2 \kappa_{1}-f_{1}\right) v u-\left(\kappa_{1}+\kappa_{2}\right) v+\hat{\kappa}_{3}
\end{aligned}
$$

and it is assumed that the non-Abelian Okamoto integral has the form

$$
\begin{aligned}
J= & p_{1} u^{3} v^{2}+p_{2} u^{2} v u v+p_{3} u^{2} v^{2} u+p_{4} u v u^{2} v+p_{5} u v u v u+ \\
& p_{6} u v^{2} u^{2}+p_{7} v u^{3} v+p_{8} v u^{2} v u+p_{9} v u v u^{2}+\left(1-\sum p_{i}\right) v^{2} u^{3}+ \\
& q_{1} u^{2} v^{2}+q_{2} u v u v+q_{3} u v^{2} u+q_{4} v u^{2} v+q_{5} v u v u+ \\
& \left(-2-\sum q_{i}\right) v^{2} u^{2}+r_{1} u^{2} v+r_{2} u v u+\left(-\kappa_{1}-\sum r_{i}\right) v u^{2}+ \\
& s_{1} u v^{2}+s_{2} v u v+\left(1-\sum s_{i}\right) v^{2} u+t_{1} u v+ \\
& \left(\kappa_{1}+\kappa_{2}-t_{1}\right) v u-\kappa_{3} u-\kappa_{2} v+\hat{\kappa}_{3}+z\left(w_{1} u v+\left(\kappa_{4}-w_{1}\right) v u\right) .
\end{aligned}
$$

There 10 systems of P_{5}-type that have the Okamoto integral. Under a limiting transition the five classes of P_{6} systems turn into five classes of P_{5} systems, where each of these classes contain two systems.

P_{4} systems

A non-abelian generalization of scalar P_{4} system can be written as

$$
\left\{\begin{aligned}
u^{\prime} & =-u^{2}+2 u v+\alpha[u, v]-2 z u+\kappa_{2} \\
v^{\prime} & =-v^{2}+2 v u+\beta[v, u]+2 z v+\kappa_{3}
\end{aligned}\right.
$$

An ansatz for a non-abelian analog of this system is:

$$
\begin{aligned}
J= & a_{1} u v^{2}+\left(1-a_{1}-a_{2}\right) v u v+a_{2} v^{2} u+b_{1} u^{2} v+ \\
& \left(-1-b_{1}-b_{2}\right) u v u+b_{2} v u^{2}-\kappa_{3} u+\kappa_{4} v \\
& +z\left(c_{1} u v+\left(-2-c_{1}\right) v u\right) .
\end{aligned}
$$

All 13 integrable non-Abelian systems of P_{4}-type found in our previous paper are depicted in the following figure:

Six of these systems have the Okamoto integral. This is one of the three orbits of action of the transformation group. The red point in the middle of the figure is the Hamiltonian non-Abelian system P_{4}. We denote it by P_{4}^{0}.

P_{3} systems: $\mathrm{P}_{3}\left(D_{6}\right)$

In the scalar case, the $\mathrm{P}_{3}\left(D_{6}\right)$-system,

$$
\left\{\begin{array}{l}
z u^{\prime}=2 u^{2} v+\kappa_{1} u+z\left(\kappa_{2} u^{2}+\kappa_{4}\right) \\
z v^{\prime}=-2 u v^{2}-\kappa_{1} v+z\left(-2 \kappa_{2} u v-\kappa_{3}\right)
\end{array}\right.
$$

has the following Okamoto integral:

$$
J=u^{2} v^{2}+\kappa_{1} u v+z\left(\kappa_{2} u^{2} v+\kappa_{3} u+\kappa_{4} v\right)
$$

We consider the following non-abelian ansatz for the components $P_{1}(u, v), P_{2}(u, v)$, and $Q_{2}(u, v)$:

$$
\begin{aligned}
& P_{1}(u, v)=a_{1} u^{2} v+\left(2-a_{1}-a_{2}\right) u v u+a_{2} v u^{2}+\kappa_{1} u \\
& P_{2}(u, v)=b_{1} u v^{2}-\left(2+b_{1}+b_{2}\right) v u v+b_{2} v^{2} u-\kappa_{1} v \\
& Q_{2}(u, v)=c_{1} u v+\left(-2 \kappa_{2}-c_{1}\right) v u-\kappa_{3}
\end{aligned}
$$

and non-abelian Okamoto integrals of the form

$$
\begin{aligned}
J= & d_{1} u^{2} v^{2}+d_{2} u v^{2} u+d_{3} u v u v+d_{4} v u^{2} v+d_{5} v u v u \\
& +\left(1-\sum d_{i}\right) v^{2} u^{2}+e_{1} u v+\left(\kappa_{1}-e_{1}\right) v u \\
& +z\left(h_{1} u^{2} v+\left(\kappa_{2}-h_{1}-h_{2}\right) u v u+h_{2} v u^{2}+\kappa_{3} u+\kappa_{4} v\right) .
\end{aligned}
$$

We have 8 polynomial systems of P_{3} type. One of them is given by

$$
\begin{aligned}
& P_{1}(u, v)=2 u v u+\kappa_{1} u, \quad Q_{1}(u, u)=\kappa_{2} u^{2}+\kappa_{4}, \\
& \quad P_{2}(u, v)=-2 v u v-\kappa_{1} v, \quad Q_{2}(u, u)=-2 \kappa_{2} v u-\kappa_{3} .
\end{aligned}
$$

The corresponding Okamoto integral is given by

$$
J=v u^{2} v+\kappa_{1} v u+\kappa_{3} \kappa_{2}^{-1}[u, v]+z\left(\kappa_{2} v u^{2}+\kappa_{3} u+\kappa_{4} v\right) .
$$

P_{2} systems

The scalar P_{2}-system,

$$
\left\{\begin{array}{l}
u^{\prime}=-u^{2}+v-\frac{1}{2} z \\
v^{\prime}=2 u v+\kappa_{3}
\end{array}\right.
$$

has the following Okamoto integral:

$$
J=\frac{1}{2} v^{2}-u^{2} v-\kappa_{3} u-\frac{1}{2} z v .
$$

A non-abelian generalization can be written as

$$
\left\{\begin{aligned}
u^{\prime} & =-u^{2}+v-\frac{1}{2} z \\
v^{\prime} & =2 v u+\beta[v, u]+\kappa_{3}
\end{aligned}\right.
$$

In the paper Adler-Sokolov it was proved that $\beta=-1,0,1,2,3$..

An ansatz for a non-abelian analog is:

$$
J=a_{1} u^{2} v+\left(-1-a_{1}-a_{2}\right) u v u+a_{2} v u^{2}+\frac{1}{2} v^{2}-\kappa_{3} u-\frac{1}{2} z v .
$$

There two P_{2} systems:

$$
\begin{gathered}
\left\{\begin{array}{l}
u^{\prime}=-u^{2}+v-\frac{1}{2} z, \\
v^{\prime}=2 u v+\kappa_{3},
\end{array}\right. \\
J=-u^{2} v+\frac{1}{2} v^{2}-\kappa_{3} u-\frac{1}{2} z v . \\
\left\{\begin{array}{l}
u^{\prime}=-u^{2}+v-\frac{1}{2} z, \\
v^{\prime}=2 v u+\kappa_{3},
\end{array}\right. \\
J=-v u^{2}+\frac{1}{2} v^{2}-\kappa_{3} u-\frac{1}{2} z v .
\end{gathered}
$$

This is $P_{2}^{(1)}$ system found in Adler-Sokolov.

It is well-known that the scalar system (1) has the isomonodromic representation (7), where matrices $\mathcal{A}(z, \lambda)$ and $\mathcal{B}(z, \lambda)$ have the form

$$
\mathcal{A}(z, \lambda)=\frac{A_{0}}{\lambda}+\frac{A_{1}}{\lambda-1}+\frac{A_{z}}{\lambda-z}, \quad \mathcal{B}(z, \lambda)=-\frac{A_{z}}{\lambda-z}+B
$$

with the following matrices A_{0}, A_{1}, A_{z}, and B :

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{cc}
\kappa_{4}-\kappa_{1}-1 & u z^{-1}-1 \\
0 & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
-u v+\kappa_{1} & 1 \\
-u^{2} v^{2}+\kappa_{1} u v+\kappa_{3} & u v
\end{array}\right) \\
& A_{z}=\left(\begin{array}{cc}
u v+\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) & -u z^{-1} \\
z u v^{2}+\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) z v & -u v
\end{array}\right), \\
& B=\left(\begin{array}{cc}
(z(z-1))^{-1}\left(2 u^{2} v-2 z u v-\kappa_{1} u-\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) z\right) & 0 \\
-u v^{2}-\left(\kappa_{1}-\kappa_{2}-\kappa_{4}\right) v & 0
\end{array}\right) .
\end{aligned}
$$

Degenerations

In the scalar case the following degeneration scheme is well-known:

Рис.: Caption

$\mathrm{P}_{6} \rightarrow \mathrm{P}_{5}$
After the transformation with the small parameter ε

$$
z \mapsto-\varepsilon^{-1}+\varepsilon^{-1} z, \quad \kappa_{2} \mapsto \kappa_{2}+\varepsilon^{-1} \kappa_{4}, \quad \kappa_{4} \mapsto-\varepsilon \kappa_{1}+\varepsilon \kappa_{4},
$$

the Painlevé-6 system (1) becomes the Painlevé-5 system of the form

$$
\left\{\begin{array}{l}
z u^{\prime}=2 u^{3} v-4 u^{2} v-\kappa_{1} u^{2}+2 u v+\left(\kappa_{1}+\kappa_{2}\right) u-\kappa_{2}+\kappa_{4} z u \\
z v^{\prime}=-3 u^{2} v^{2}+4 u v^{2}-v^{2}+2 \kappa_{1} u v-\left(\kappa_{1}+\kappa_{2}\right) v+\kappa_{3}-\kappa_{4} z v
\end{array}\right.
$$

The corresponding Hamiltonian is
$z H=u^{3} v^{2}-2 u^{2} v^{2}+u v^{2}-\kappa_{1} u^{2} v+\left(\kappa_{1}+\kappa_{2}\right) u v-\kappa_{3} u-\kappa_{2} v+\kappa_{3}+\kappa_{4} z u v$.
Supplementing the transformation by the following change of the parameter λ

$$
\lambda \mapsto \varepsilon^{-1} z^{-1}(\lambda-1),
$$

one can obtain the Lax pair for the Painlevé- 5 system :

$$
\mathcal{A}(\lambda, z)=\frac{A_{0}}{\lambda}+\frac{A_{1}}{\lambda-1}+A_{\infty}, \quad \mathcal{B}(\lambda, z)=B_{1} \lambda+B_{\infty}
$$

with

$$
\begin{gathered}
A_{0}=\left(\begin{array}{cc}
-u v+\kappa_{1} & 1 \\
-u^{2} v^{2}+\kappa_{1} u v+\kappa_{3} & u v
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
u v-\kappa_{2} & -u \\
u v^{2}-\kappa_{2} v & -u v
\end{array}\right), \\
A_{\infty}=\left(\begin{array}{cc}
\kappa_{4} z & 0 \\
0 & 0
\end{array}\right), \quad B_{1}=\left(\begin{array}{cc}
\kappa_{4} & 0 \\
0 & 0
\end{array}\right), \\
B_{\infty}=z^{-1}\left(\begin{array}{cc}
2 u^{2} v-2 u v-\kappa_{1} u+\kappa_{1} & -u+1 \\
-u^{2} v^{2}+u v^{2}+\kappa_{1} u v-\kappa_{2} v+\kappa_{3} & 0
\end{array}\right) .
\end{gathered}
$$

$\mathrm{P}_{5} \rightarrow \mathrm{P}_{4}$
The Painlevé- 5 system after the transformation with the small parameter ε

$$
\begin{gathered}
z \mapsto \frac{1}{\sqrt{2}} \varepsilon^{-1}(z-1), \quad u \mapsto \sqrt{2} \varepsilon^{-1} u, \quad v \mapsto \sqrt{2} \varepsilon v, \\
\kappa_{1}=\varepsilon^{-2}, \quad \kappa_{2} \mapsto-2 \kappa_{2}, \quad \kappa_{3} \mapsto 2 \varepsilon^{2} \kappa_{3}, \quad \kappa_{4}=-2 \varepsilon^{-2},
\end{gathered}
$$

becomes the Painlevé-4 system of the form

$$
\left\{\begin{aligned}
u^{\prime} & =-u^{2}+2 u v-2 z u+\kappa_{2} \\
v^{\prime} & =-v^{2}+2 u v+2 z v+\kappa_{3}
\end{aligned}\right.
$$

The corresponding Hamiltonian is

$$
H=u v^{2}-u^{2} v-2 z u v-\kappa_{3} u+\kappa_{2} v .
$$

To get the degeneracy of the Lax pair, we consider the following transformation
$\lambda \mapsto \frac{1}{\sqrt{2}} \varepsilon^{-1}(\lambda-1), \quad \mathcal{A} \mapsto g \mathcal{A} g^{-1}, \quad \mathcal{B} \mapsto g \mathcal{B} g^{-1}, \quad g=\left(\begin{array}{cc}1 & 0 \\ 0 & \sqrt{2} \varepsilon\end{array}\right)$,
which brings the pair for Painlevé- 5 to the followig pair for Painlevé-4:

$$
\mathcal{A}(\lambda, z)=A_{1} \lambda+A_{0}+A_{-1} \lambda^{-1}, \quad \mathcal{B}(\lambda, z)=B_{1} \lambda+B_{0}
$$

where

$$
\begin{gathered}
A_{1}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right), \quad A_{0}=\left(\begin{array}{cc}
-2 z & 1 \\
u v+\kappa_{3} & 0
\end{array}\right), \\
A_{-1}=\frac{1}{2}\left(\begin{array}{cc}
u v+\kappa_{2} & -u \\
u v^{2}+\kappa_{2} v & -u v
\end{array}\right), \quad B_{1}=\left(\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right), \\
B_{0}=\left(\begin{array}{cc}
-u-2 z & 1 \\
u v+\kappa_{3} & 0
\end{array}\right) .
\end{gathered}
$$

$\mathrm{P}_{5} \rightarrow \mathrm{P}_{3}$
Under the map

$$
\begin{gathered}
z \mapsto z^{\frac{1}{2}}, \quad u \mapsto \varepsilon^{-1} z^{-\frac{1}{2}}(u-1), \quad v \mapsto 2 \varepsilon z^{\frac{1}{2}} v, \\
\kappa_{1} \mapsto-1-2 \kappa_{1}+2 \kappa_{2}, \quad \kappa_{2} \mapsto-2 \varepsilon \kappa_{2} \\
\kappa_{3} \mapsto-4 \varepsilon \kappa_{3}, \quad \kappa_{4} \mapsto 2 \varepsilon^{-1} \kappa_{4}
\end{gathered}
$$

the Painlevé-5 system reduces to the Painlevé-3($\left.D_{6}\right)$-system of the form

$$
\left\{\begin{aligned}
z u^{\prime} & =2 u^{2} v+\kappa_{1} u+z\left(\kappa_{2} u^{2}+\kappa_{4}\right) \\
z v^{\prime} & =-2 u v^{2}-\kappa_{1} v+z\left(-2 \kappa_{2} u v-\kappa_{3}\right)
\end{aligned}\right.
$$

The corresponding Hamiltonian is

$$
z H=u^{2} v^{2}+\kappa_{1} u v+z\left(\kappa_{2} u^{2} v+\kappa_{3} u+\kappa_{4} v\right) .
$$

Supplementing the map by the following transformation
$\lambda \mapsto \frac{1}{2} \varepsilon \lambda, \quad \mathcal{A} \mapsto g \mathcal{A} g^{-1}, \quad \mathcal{B} \mapsto g \mathcal{B} g^{-1}+g^{\prime} g^{-1}, \quad g=\left(\begin{array}{cc}1 & 0 \\ 0 & 2 \varepsilon z^{\frac{1}{2}}\end{array}\right)$
and then changing the spectral parameter λ

$$
\lambda \mapsto z \lambda
$$

to get the Jimbo-Miwa pair, we obtain
$\mathcal{A}(\lambda, z)=A_{0}+A_{-1} \lambda^{-1}+A_{-2} \lambda^{-2}, \quad \mathcal{B}(\lambda, z)=B_{1} \lambda+B_{0}+B_{-1} \lambda^{-1}$,
with

$$
\begin{gathered}
A_{0}=\left(\begin{array}{cc}
\kappa_{4} z & 0 \\
0 & 0
\end{array}\right), \quad A_{-2}=\frac{1}{4}\left(\begin{array}{cc}
v+\kappa_{2} z & -1 \\
v^{2}+\kappa_{2} z v & -v
\end{array}\right), \\
A_{-1}=\frac{1}{2}\left(\begin{array}{cc}
-1-\kappa_{1} & -u \\
-\left(u v^{2}+\kappa_{2} z u v+\left(1+\kappa_{1}\right) v+\kappa_{3} z\right) & 0
\end{array}\right), \\
B_{1}=\left(\begin{array}{cc}
\kappa_{4} & 0 \\
0 & 0
\end{array}\right), \quad B_{0}=\frac{1}{2} z^{-1}\left(\begin{array}{cc}
4 u v+2 \kappa_{2} z u+\left(1+\kappa_{1}\right) \\
-\left(u v^{2}+\kappa_{2} z u v+\left(1+\kappa_{1}\right) v+\kappa_{3} z\right)
\end{array}\right. \\
B_{-1}=-\frac{1}{4} z^{-1}\left(\begin{array}{cc}
v+\kappa_{2} z & -1 \\
v^{2}+\kappa_{2} z v & -v
\end{array}\right)=-z^{-1} A_{-2} .
\end{gathered}
$$

$\mathrm{P}_{4} \rightarrow \mathrm{P}_{2}$
The Painlevé-4 system after the transformation with the small parameter ε

$$
\begin{gathered}
z \mapsto \frac{1}{4} \varepsilon^{-4}-\varepsilon^{-1} z, \quad u \mapsto-\frac{1}{4} \varepsilon^{-2}-\varepsilon u, \quad v \mapsto-\frac{1}{2} \varepsilon^{-1} v \\
\kappa_{2}=-\frac{1}{16} \varepsilon^{-6}, \quad \kappa_{3} \mapsto \frac{1}{2} \kappa_{3}
\end{gathered}
$$

becomes the Painlevé- 2 system of the form

$$
\left\{\begin{aligned}
u^{\prime} & =-u^{2}+v-\frac{1}{2} z \\
v^{\prime} & =2 u v+\kappa_{3}
\end{aligned}\right.
$$

The corresponding Hamiltonian is

$$
H=\frac{1}{2} v^{2}-u^{2} v-\kappa_{3} u-\frac{1}{2} z v
$$

The following degeneration data for Painlevé-4 pair

$$
\lambda \mapsto \frac{1}{4} \varepsilon^{-2}+2 \varepsilon \lambda, \quad \mathcal{A} \mapsto g \mathcal{A} g^{-1}, \quad \mathcal{B} \mapsto g \mathcal{B} g^{-1}+g^{\prime} g^{-1}
$$

where

$$
g=\left(\begin{array}{cc}
1 & 0 \\
-\varepsilon v & \varepsilon
\end{array}\right)
$$

leads to the Jimbo-Miwa pair for the Painlevé-2 system:

$$
\mathcal{A}(\lambda, z)=A_{2} \lambda^{2}+A_{1} \lambda+A_{0}, \quad \mathcal{B}(\lambda, z)=B_{1} \lambda+B_{0}
$$

where

$$
\begin{gathered}
A_{2}=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right), \quad A_{1}=\left(\begin{array}{cc}
0 & -2 \\
-v & 0
\end{array}\right) \\
A_{0}=\left(\begin{array}{cc}
-v+z & -2 u \\
u v+\kappa_{3} & v
\end{array}\right), \quad B_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
B_{0}=\left(\begin{array}{cc}
-u & -1 \\
-\frac{1}{2} v & 0
\end{array}\right) .
\end{gathered}
$$

$\mathrm{P}_{3} \rightarrow \mathrm{P}_{2}$
The P_{3}-system under the transformation

$$
\begin{aligned}
z \mapsto-2^{\frac{2}{3}}\left(\varepsilon^{-2}+\varepsilon z\right), & u \mapsto 2^{-\frac{2}{3}} \varepsilon^{-1}(u-1), \quad v \mapsto 2^{-\frac{1}{3}} \varepsilon v, \\
\kappa_{1}=2 \varepsilon^{-3}, & \kappa_{3} \mapsto 2 \kappa_{3}, \quad \kappa_{4}=\kappa_{2}=1,
\end{aligned}
$$

becomes the Painlevé-2 system.

Degenerations in non-abeian case

All 10 Painlevé- 5 systems can be obtained as the result of limiting transitions from Painlevé-6 systems. In addition, two more systems of Painlevé- 5 type with $k_{4}=0$ appear as limits.

Let us take three orbit reprentatives of Painlevé-6 and find the whole degeneration scheme for them.

Here we see another unexpected effect in the degeneration procedure. The systems P_{4}^{0} and P_{2}^{0} have no Okamoto integral. They are well-known Hamiltonian non-abelian Painlevésystems.

Example. Initial system of Painlevé-4 type :

$$
\left\{\begin{aligned}
u^{\prime} & =-u^{2}+2 u v-2 z u+\kappa_{2} \\
v^{\prime} & =-v^{2}+v u+u v+2 z v+\kappa_{3}
\end{aligned}\right.
$$

Initial integral:

$$
J=u v^{2}-u v u-\kappa_{3} u+\kappa_{2} v-2 z u v .
$$

Step-by-step transformation of the system and integral:

1. Change of variables:

$$
z=\frac{1}{4} \varepsilon^{-3}-\varepsilon Z, \quad u(z)=-\frac{1}{4} \varepsilon^{-3}-\varepsilon^{-1} U(Z), \quad v(z)=-2 \varepsilon V(Z) .
$$

System:

$$
\left\{\begin{array}{l}
U^{\prime}=-U^{2}+V-\frac{1}{2} Z+\varepsilon^{2}\left(4 U V-2 Z U+\kappa_{2}\right)+\frac{1}{16} \varepsilon^{-4} \\
V^{\prime}=V U+U V+\frac{1}{2} \kappa_{3}+\varepsilon^{2}\left(-2 V^{2}+2 Z V\right)
\end{array}\right.
$$

Integral:
$J=\varepsilon\left(-4 U V^{2}+4 Z U V-2 \kappa_{2} V\right)+\varepsilon^{-1}\left(2 U V U-V^{2}+\kappa_{3} U+Z V\right)$

$$
+\frac{1}{8} \varepsilon^{-5} V+\varepsilon^{-3}\left(\frac{1}{2} V U-\frac{1}{2} U V-\frac{1}{4} \kappa_{3}\right)
$$

2. Change of parameters:

$$
\kappa_{2}=-\frac{1}{16} \varepsilon^{-6}, \quad \quad \kappa_{3}=2 \kappa
$$

System:

$$
\left\{\begin{array}{l}
U^{\prime}=-U^{2}+V-\frac{1}{2} Z+\varepsilon^{2}(4 U V-2 Z U) \\
V^{\prime}=V U+U V+\kappa+\varepsilon^{2}\left(-2 V^{2}+2 Z V\right)
\end{array}\right.
$$

Integral:

$$
\begin{aligned}
\hat{J}= & 4 \varepsilon\left(-U V^{2}+Z U V\right)+\varepsilon^{-1}\left(2 U V U-V^{2}+2 \kappa U+Z V\right) \\
& +\frac{1}{2} \varepsilon^{-3}(V U-U V-\kappa) .
\end{aligned}
$$

3. System after the limit $\varepsilon \rightarrow 0$:

$$
\left\{\begin{aligned}
U^{\prime} & =-U^{2}+V-\frac{1}{2} Z \\
V^{\prime} & =V U+U V+\kappa
\end{aligned}\right.
$$

Integral after the limit $\varepsilon \rightarrow 0$:

$$
J_{2}=U V-V U
$$

