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Mathematical Physics, 2015, 56(3), 033503
Adler V.E. and Sokolov V.V., On matrix Painlevé II
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Introduction
The Okamoto polynomial Hamiltonian of the sixth Painlevé
equation is given by:

z(z − 1)H = u3v2 − u2v2 − κ1u2v + κ2uv − κ3u+

z
(
−u2v2 + uv2 + κ4uv + (κ1 − κ2 − κ4)v

)
,

where ki are arbitrary constants, z ∈ C.
The corresponding Hamiltonian system is

z(z − 1)
du

dz
= 2u3v − 2u2v − κ1u2 + κ2u

+z
(
−2u2v + 2uv + κ4u+ κ1 − κ2 − κ4

)
,

z(z − 1)
dv

dz
= −3u2v2 + 2uv2 + 2κ1uv − κ2v + κ3

+z
(
2uv2 − v2 − κ4v

)
,

(1)

The variable u satisfies the Painlevé-6 equation.



The system has the form
f(z)

du

dz
= P1(u, v) + z Q1(u, v),

f(z)
dv

dz
= P2(u, v) + z Q2(u, v),

(2)

while the Hamiltonian has the following structure
f(z)H = H1 + z H2, where Pi, Qi, Hi are polynomials in u, v. All
other scalar Painlevé systems and their Hamiltonians have the
same structure.

Let us consider the system
du

dt
= P1(u, v) + z Q1(u, v),

dv

dt
= P2(u, v) + z Q2(u, v),

(3)

where we regard z as a parameter. We call (3) auxiliary
autonomous system for (2).



It follows from the fact that (1) is a Hamiltonian system with
the Hamiltonian H that

J = H1 + z H2, (4)

where
H1 = u3v2 − u2v2 − κ1u2v + κ2uv − κ3u,

H2 = −u2v2 + uv2 + κ4uv + (κ1 − κ2 − κ4)v,

is an integral of motion for system (3) i.e. dJdt = 0. We call the
function J the Okamoto integral.

For any N the system{
uτ = JN ut,

vτ = JN vt
(5)

is an infinitesimal symmetry.



Consider systems of the form (3), where Pi and Qi are
non-commutative polynomials given by

P1(u, v) = a1u
3v + a2u

2vu+ a3uvu
2 + (2− a1 − a2 − a3)vu3

+c1u
2v + (−2− c1 − c2)uvu+ c2vu

2 − κ1u2 + κ2u,

Q1(u, v) = f1u
2v + (−2− f1 − f2)uvu+ f2vu

2

+h1uv + (2− h1)vu+ κ4u+ (κ1 − κ2 − κ4),
and

P2(u, v) = b1u
2v2 + b2uvuv + b3uv

2u+ b4vu
2v + b5vuvu

+(−3−
∑
bi)v

2u2 + d1uv
2 + (2− d1 − d2)vuv

+d2v
2u+ e1vu+ (2κ1 − e1)uv − κ2v + κ3,

Q2(u, v) = g1uv
2 + (2− g1 − g2)vuv + g2v

2u− v2 − κ4v.

We assume that all coefficients are complex constants. If
f(z) = z(z − 1), then the corresponding system (2) is a natural
non-commutative generalization of the Painlevé-6 system.



We postulate the existence of non-abelian integral of
motion of the form

J = H1(u, v) + z H2(u, v), (6)

where

H1(u, v) = p1u
3v2 + p2u

2vuv + p3u
2v2u+ p4uvu

2v + p5uvuvu

+p6uv
2u2 + p7vu

3v + p8vu
2vu+ p9vuvu

2

+(1−
∑
pi) v

2u3 + q1u
2v2 + q2uvuv + q3uv

2u+ q4vu
2v

+q5vuvu+ (−1−
∑
qi) v

2u2 + r1u
2v + r2uvu

+(−κ1 −
∑
ri)vu

2 + s1uv + (κ2 − s1)vu− κ3u,

H2(u, v) = t1u
2v2 + t2uvuv + t3uv

2u+ t4vu
2v + t5vuvu

+(−1−
∑
ti)v

2u2 + x1uv
2 + x2vuv + (1−

∑
xi)v

2u

+y1uv + (κ4 − y1)vu+ (κ1 − κ2 − κ4)v



As a result, we found 18 non-abelian systems (2) of
Painlevé type. A transformation group acts on the set of these
system. There are 3 orbits of the group action and three
non-equivalent systems corresponding to these orbits.

All these systems are not Hamiltonian and therefore our
approach cannot reconstruct the known non-abelian
Hamiltonian P6 system. However, we obtain an interesting class
of integrable P6 systems.

To justify their integrability, we find the isomonodromic
Lax representations of the form

Az − Bλ = [B,A] (7)

for these systems.



Non-abelian ODEs

The systems have the form

dxα
dt

= Fα(x), x = (x1, ..., xN ), (8)

where x1, . . . , xN are generators of the free unital associative
algebra A over C. Actually, (8) is a notation for the derivation
dt of A such that dt(xi) = Fi. The element dt(z) is uniquely
determined for any element z ∈ A by the Leibniz identity.

Usually, the first integrals of a system (8) are some
elements of the quotient vector space A/[A, A], which is a
formalisation of integrals of the form trace(f(x1, ..., xN )) in the
matrix case xi(t) ∈Matm. For the Hamiltonian non-abelian
systems the Hamiltonians are first integrals of this kind.
However in this paper we are dealing with the first integrals
that are elements of A.



Definition An element j ∈ A are called a first integral of
(8) iff dt(j) = 0.

For non-abelian systems with two variables u and v a
special integral I = uv − vu appears in the following statement:

Lemma A system is Hamiltonian with respect to the
canonical symplectic structure i.e. has the form

du

dt
=

∂H

∂v
,

dv

dt
= −∂H

∂u
,

(9)

where H ∈ A and ∂
∂u ,

∂
∂v are non-abelian derivatives iff the

system has the first integral I.



Non-abelian partial derivatives ∂
∂x1

, ..., ∂
∂xn

for arbitrary
polynimial f ∈ A are defined by the identity

df =
∂f

∂x1
dx1 + ...+

∂f

∂xn
dxn,

where the additional non-abelian variables dxi are supposed to
be moved to the right by the cyclic permutations of generators
in monomials. Notice that ∂

∂xi
themselves are not vector fields in

the nonabelian case.
Example Let f = u2vuv. We have

df = duuvuv + u du vuv + u2 dv uv + u2v du v + u2vu dv.
Now we make cyclic permutations in monomials to bring all
du, dv to the end in each monomial. We obtain
uvuv du+ vuvu du+ uvu2 dv+ vu2v du+ u2vu dv and, therefore,

∂f

∂u
= uvuv + vuvu+ vu2v,

∂f

∂v
= uvu2 + u2vu

.
Notice that the Hamiltonian H of a system (9) is not a first

integral in the sense od our definition.



We assume that the auxiliary system (3) has an Okamoto
first integral of the form (6). In both the system and in the
integral the variable z plays the role of arbitrary parameter.
Using the terminology of the bi-Hamiltonian formalism, we have
pencils of two non-abelian dynamical systems and two
non-abelian first integrals.

Instead of algebra A with multiplication xy one can
consider the associative algebra with the opposite product
x ? y = yx. The transition to the opposite multiplication is
represented by the involution τ : A 7→ A defined by

τ(xi) = xi, τ(ax+ by) = aτ(x) + bτ(y), τ(xy) = τ(y)τ(x),

where x, y ∈ A, a, b ∈ C. This involution is called transposition.

All properties of integrable systems such as the existence of
first integrals, infinitesimal symmetries, Lax representations etc.
are invariant with respect to τ .



P6 systems
Differentiating the integral with respect to the system, we

obtain a polynomial P (u, v, z) of degree 8. The simplest
equations from this system are:

p1 = p3 = p6 = p7 = 0, p2 = 1− p4 − p5 − p8 − p9.

In turns out that all coefficients of polynomials Pi, Qi can be
expressed in terms of the Okamoto integral:

a1 = 1− p4 − p5 − p8 − p9, a2 = 1 + p4 − p8 − p9,

a3 = p5 + 2p8 + p9, b1 = −1 + p4 + p5 + p8 + p9,

b2 = −2 + p5 + 2p8 + 2p9, b3 = 0, b4 = −p4 − p5 − p8,

b5 = −p5 − 2p8 − 2p9, c1 = −d1 = 2q1 + q2,

c2 = −d2 = −2− 2q1 − 2q2 − 2q3 − 2q4 − q5, h1 = 2x1 + x2,



e1 = 2κ1 + 2r1 + r2,

f2 = 1− t3 + x1 + x2 − p5 − p8 − 2p9 + 2q1 + 2q2 + q3 + 2q4 + q5,

f1 = −2− t3 − x1 + p4 + p5 + 2p8 + 2p9 − 2q1 − q2 − q3;

Equating to zero the coefficients of different monomials of
degree 8 in P (u, v, z), we arrive at a system of nonlinear
algebraic equations for the variables ai, i = 1, 2, 3,
bi, i = 1, ..., 5 and pi, i = 1, ..., 9.

Using the above formulas, we can eliminate ai, bi and
p1, p2, p3, p6, p7 to obtain a system for p4, p5, p8, p9, which is
equivalent to



(p4 − 1)p4 = (p5 − 1)p5 = (p8 − 1)p8 = (p9 − 1)p9 = 0;

p4p5 = p4p8 = p4p9 = p5p8 = p5p9 = p8p9 = 0;

This system have the following 5 solutions:

Case 1 : p4 = 0, p5 = 0, p8 = 1, p9 = 0;

Case 2 : p4 = 0, p5 = 0, p8 = 0, p9 = 1;

Case 3 : p4 = 0, p5 = 1, p8 = 0, p9 = 0;

Case 4 : p4 = 1, p5 = 0, p8 = 0, p9 = 0;

Case 5 : p4 = 0, p5 = 0, p8 = 0, p9 = 0.

In each case, equating to zero the remaining coefficients in the
polynomial P (u, v, z), we obtain a large but rather simple
algebraic system for qi, ri, si, ti, xi, yi. This system contains
κ1, κ2, κ3, κ4 as parameters.



Solving this system in Case 1, we obtain systems 1.1- 1.3;
systems 2.1- 2.3 appear in Case 2; Case 3 produces 3.1- 3.6;
systems 4.1- 4.3 and 5.1- 5.3 correspond Case 4 and Case 5.

All systems contain four arbitrary parameters κ1 − κ4.
Notice that additional systems that correspond to particular
values of parameters do not exist.

Transformation group

The scalar P6 system (1) is invariant under the transformations

r1 : {z, u, v} 7→ {1− z, 1− u, −v},

r2 : {z, u, v} 7→ {z−1, z−1u, zv},

r3 : {z, u, v} 7→ {z(z − 1)−1, (z − u)(z − 1)−1, −(z − 1)v}.



These involutions change the parameters in the following way

r1 : {κ1, κ2, κ3, κ4} 7→ {κ1, 2κ1 − κ2 − κ4, κ3, κ4},

r2 : {κ1, κ2, κ3, κ4} 7→ {κ1, κ4 − 1, κ3, κ2 + 1},

r3 : {κ1, κ2, κ3, κ4} 7→ {κ1, κ2, κ3, 2κ1 − κ2 − κ4 + 1}.

The involutions ri and τ act on the set of eighteen
non-abelian systems described above. There are three orbits of
this action:

Orbit 1 = {1.1, 1.2, 1.3, 4.1, 4.2, 4.3} ,

Orbit 2 = {2.1, 2.2, 2.3, 5.1, 5.2, 5.3} ,

Orbit 3 = {3.1, 3.2, 3.3, 3.4, 3.5, 3.6} .



P5−P2 systems
P5 systems

In the scalar case, the P5-system,{
zu′ = 2u3v − 4u2v − κ1u2 + 2uv + (κ1 + κ2)u− κ2 + κ4zu,

zv′ = −3u2v2 + 4uv2 − v2 + 2κ1uv − (κ1 + κ2)v + κ3 − κ4zv,

has the following Okamoto integral:

J = u3v2−2u2v2+uv2−κ1u2v+(κ1+κ2)uv−κ3u−κ2v+κ3+κ4zuv.

Note that the system has the structure{
zu′ = P1(u, v) + κ4 z u,

zv′ = P2(u, v)− κ4 z v.



We consider the following non-abelian ansatz for the
components P1(u, v) and P2(u, v):

P1(u, v) = a1u
3v + a2u

2vu+ a3uvu
2 + (2−

∑
ai)vu

3+

c1u
2v + (−4− c1 − c2)uvu+ c2vu

2 − κ1u2+
e1uv + (2− e1)vu+ (κ1 + κ2)u− κ2,

P2(u, v) = b1u
2v2 + b2uvuv + b3uv

2u+ b4vu
2v + b5vuvu+

(−3−
∑
bi)v

2u2 + d1uv
2 + (4− d1 − d2)vuv−

d2v
2u− v2 + f1uv + (2κ1 − f1)vu− (κ1 + κ2)v + κ̂3

and it is assumed that the non-Abelian Okamoto integral has
the form



J = p1u
3v2 + p2u

2vuv + p3u
2v2u+ p4uvu

2v + p5uvuvu+

p6uv
2u2 + p7vu

3v + p8vu
2vu+ p9vuvu

2 + (1−
∑
pi)v

2u3+

q1u
2v2 + q2uvuv + q3uv

2u+ q4vu
2v + q5vuvu+

(−2−
∑
qi)v

2u2 + r1u
2v + r2uvu+ (−κ1 −

∑
ri)vu

2+

s1uv
2 + s2vuv + (1−

∑
si)v

2u+ t1uv+

(κ1 + κ2 − t1)vu− κ3u− κ2v + κ̂3 + z(w1uv + (κ4 − w1)vu).

There 10 systems of P5-type that have the Okamoto
integral. Under a limiting transition the five classes of P6

systems turn into five classes of P5 systems, where each of these
classes contain two systems.



P4 systems

A non-abelian generalization of scalar P4 system can be
written as{

u′ = −u2 + 2uv + α [u, v]− 2zu+ κ2,

v′ = −v2 + 2vu+ β [v, u] + 2zv + κ3.

An ansatz for a non-abelian analog of this system is:

J = a1uv
2 + (1− a1 − a2)vuv + a2v

2u+ b1u
2v+

(−1− b1 − b2)uvu+ b2vu
2 − κ3u+ κ4v

+z (c1uv + (−2− c1)vu) .



All 13 integrable non-Abelian systems of P4-type found in
our previous paper are depicted in the following figure:

Six of these systems have the Okamoto integral. This is one of
the three orbits of action of the transformation group. The red
point in the middle of the figure is the Hamiltonian non-Abelian
system P4. We denote it by P 0

4 .



P3 systems: P3(D6)

In the scalar case, the P3(D6)-system,{
zu′ = 2u2v + κ1u+ z

(
κ2u

2 + κ4
)
,

zv′ = −2uv2 − κ1v + z (−2κ2uv − κ3) ,

has the following Okamoto integral:

J = u2v2 + κ1uv + z
(
κ2u

2v + κ3u+ κ4v
)
.

We consider the following non-abelian ansatz for the
components P1(u, v), P2(u, v), and Q2(u, v):

P1(u, v) = a1u
2v + (2− a1 − a2)uvu+ a2vu

2 + κ1u,

P2(u, v) = b1uv
2 − (2 + b1 + b2)vuv + b2v

2u− κ1v,

Q2(u, v) = c1uv + (−2κ2 − c1)vu− κ3



and non-abelian Okamoto integrals of the form

J = d1u
2v2 + d2uv

2u+ d3uvuv + d4vu
2v + d5vuvu

+(1−
∑
di)v

2u2 + e1uv + (κ1 − e1)vu

+z
(
h1u

2v + (κ2 − h1 − h2)uvu+ h2vu
2 + κ3u+ κ4v

)
.

We have 8 polynomial systems of P3 type. One of them is
given by

P1(u, v) = 2uvu+ κ1u, Q1(u, u) = κ2u
2 + κ4,

P2(u, v) = −2vuv − κ1v, Q2(u, u) = −2κ2vu− κ3.

The corresponding Okamoto integral is given by

J = vu2v + κ1vu+ κ3 κ
−1
2 [u, v] + z

(
κ2vu

2 + κ3u+ κ4v
)
.



P2 systems
The scalar P2-system,{

u′ = −u2 + v − 1
2z,

v′ = 2uv + κ3,

has the following Okamoto integral:

J =
1

2
v2 − u2v − κ3u−

1

2
zv.

A non-abelian generalization can be written as{
u′ = −u2 + v − 1

2z,

v′ = 2vu+ β[v, u] + κ3.

In the paper Adler-Sokolov it was proved that β = −1, 0, 1, 2, 3..



An ansatz for a non-abelian analog is:

J = a1u
2v + (−1− a1 − a2)uvu+ a2vu

2 +
1

2
v2 − κ3u−

1

2
zv.

There two P2 systems:{
u′ = −u2 + v − 1

2z,

v′ = 2uv + κ3,

J = −u2v + 1

2
v2 − κ3u−

1

2
zv.

{
u′ = −u2 + v − 1

2z,

v′ = 2vu+ κ3,

J = −vu2 + 1

2
v2 − κ3u−

1

2
zv.

This is P (1)
2 system found in Adler-Sokolov.



It is well-known that the scalar system (1) has the
isomonodromic representation (7), where matrices A(z, λ) and
B(z, λ) have the form

A(z, λ) = A0

λ
+

A1

λ− 1
+

Az
λ− z

, B(z, λ) = − Az
λ− z

+B

with the following matrices A0, A1, Az, and B:

A0 =

(
κ4 − κ1 − 1 uz−1 − 1

0 0

)
, A1 =

(
−uv + κ1 1

−u2v2 + κ1uv + κ3 uv

)
,

Az =

(
uv + (κ1 − κ2 − κ4) −uz−1

zuv2 + (κ1 − κ2 − κ4)zv −uv

)
,

B =

(
(z(z − 1))−1

(
2u2v − 2zuv − κ1u− (κ1 − κ2 − κ4)z

)
0

−uv2 − (κ1 − κ2 − κ4)v 0

)
.



Degenerations
In the scalar case the following degeneration scheme is

well-known:

Рис.: Caption

P6 → P5

After the transformation with the small parameter ε

z 7→ −ε−1 + ε−1z, κ2 7→ κ2 + ε−1 κ4, κ4 7→ −εκ1 + ε κ4,

the Painlevé-6 system (1) becomes the Painlevé-5 system of the
form



{
zu′ = 2u3v − 4u2v − κ1u2 + 2uv + (κ1 + κ2)u− κ2 + κ4zu,

zv′ = −3u2v2 + 4uv2 − v2 + 2κ1uv − (κ1 + κ2)v + κ3 − κ4zv.

The corresponding Hamiltonian is

zH = u3v2−2u2v2+uv2−κ1u2v+(κ1+κ2)uv−κ3u−κ2v+κ3+κ4zuv.

Supplementing the transformation by the following change
of the parameter λ

λ 7→ ε−1z−1(λ− 1),

one can obtain the Lax pair for the Painlevé-5 system :



A(λ, z) = A0

λ
+

A1

λ− 1
+A∞, B(λ, z) = B1λ+B∞,

with

A0 =

(
−uv + κ1 1

−u2v2 + κ1uv + κ3 uv

)
, A1 =

(
uv − κ2 −u
uv2 − κ2v −uv

)
,

A∞ =

(
κ4z 0

0 0

)
, B1 =

(
κ4 0

0 0

)
,

B∞ = z−1

(
2u2v − 2uv − κ1u+ κ1 −u+ 1

−u2v2 + uv2 + κ1uv − κ2v + κ3 0

)
.



P5 → P4

The Painlevé-5 system after the transformation with the
small parameter ε

z 7→ 1√
2
ε−1(z − 1), u 7→

√
2 ε−1u, v 7→

√
2 ε v,

κ1 = ε−2, κ2 7→ −2κ2, κ3 7→ 2ε2κ3, κ4 = −2ε−2,

becomes the Painlevé-4 system of the form{
u′ = −u2 + 2uv − 2zu+ κ2,

v′ = −v2 + 2uv + 2zv + κ3.

The corresponding Hamiltonian is

H = uv2 − u2v − 2zuv − κ3u+ κ2v.

To get the degeneracy of the Lax pair, we consider the
following transformation

λ 7→ 1√
2
ε−1(λ− 1), A 7→ gAg−1, B 7→ gBg−1, g =

(
1 0

0
√
2 ε

)
,



which brings the pair for Painlevé-5 to the followig pair for
Painlevé-4:

A(λ, z) = A1λ+A0 +A−1λ
−1, B(λ, z) = B1λ+B0,

where

A1 =

(
−2 0

0 0

)
, A0 =

(
−2z 1

uv + κ3 0

)
,

A−1 =
1

2

(
uv + κ2 −u
uv2 + κ2v −uv

)
, B1 =

(
−2 0

0 0

)
,

B0 =

(
−u− 2z 1

uv + κ3 0

)
.



P5 → P3

Under the map

z 7→ z
1
2 , u 7→ ε−1z−

1
2 (u− 1), v 7→ 2ε z

1
2 v,

κ1 7→ −1− 2κ1 + 2κ2, κ2 7→ −2ε κ2,

κ3 7→ −4ε κ3, κ4 7→ 2ε−1 κ4,

the Painlevé-5 system reduces to the Painlevé-3(D6)-system of
the form {

zu′ = 2u2v + κ1u+ z
(
κ2u

2 + κ4
)
,

zv′ = −2uv2 − κ1v + z (−2κ2uv − κ3) .

The corresponding Hamiltonian is

zH = u2v2 + κ1uv + z
(
κ2u

2v + κ3u+ κ4v
)
.

Supplementing the map by the following transformation

λ 7→ 1

2
ε λ, A 7→ gAg−1, B 7→ gBg−1 + g′g−1, g =

(
1 0

0 2εz
1
2

)



and then changing the spectral parameter λ

λ 7→ zλ

to get the Jimbo-Miwa pair, we obtain

A(λ, z) = A0 +A−1λ
−1 +A−2λ

−2, B(λ, z) = B1λ+B0 +B−1λ
−1,

with

A0 =

(
κ4z 0

0 0

)
, A−2 =

1

4

(
v + κ2z −1
v2 + κ2zv −v

)
,

A−1 =
1

2

(
−1− κ1 −u

−(uv2 + κ2zuv + (1 + κ1)v + κ3z) 0

)
,

B1 =

(
κ4 0

0 0

)
, B0 =

1

2
z−1

(
4uv + 2κ2zu+ (1 + κ1) −u

−(uv2 + κ2zuv + (1 + κ1)v + κ3z) 2

)
,

B−1 = −
1

4
z−1

(
v + κ2z −1
v2 + κ2zv −v

)
= −z−1A−2.



P4 → P2

The Painlevé-4 system after the transformation with the small
parameter ε

z 7→ 1

4
ε−4 − ε−1z, u 7→ −1

4
ε−2 − ε u, v 7→ −1

2
ε−1v,

κ2 = −
1

16
ε−6, κ3 7→

1

2
κ3,

becomes the Painlevé-2 system of the form{
u′ = −u2 + v − 1

2z,

v′ = 2uv + κ3,

The corresponding Hamiltonian is

H =
1

2
v2 − u2v − κ3u−

1

2
zv.

The following degeneration data for Painlevé-4 pair

λ 7→ 1

4
ε−2 + 2ελ, A 7→ gAg−1, B 7→ gBg−1 + g′g−1,

where



g =

(
1 0

−ε v ε

)
,

leads to the Jimbo-Miwa pair for the Painlevé-2 system:

A(λ, z) = A2λ
2 +A1λ+A0, B(λ, z) = B1λ+B0,

where

A2 =

(
2 0

0 0

)
, A1 =

(
0 −2
−v 0

)
,

A0 =

(
−v + z −2u
uv + κ3 v

)
, B1 =

(
1 0

0 0

)
,

B0 =

(
−u −1
−1

2v 0

)
.



P3 → P2

The P3-system under the transformation

z 7→ −2
2
3 (ε−2 + εz), u 7→ 2−

2
3 ε−1 (u− 1) , v 7→ 2−

1
3 εv,

κ1 = 2ε−3, κ3 7→ 2κ3, κ4 = κ2 = 1,

becomes the Painlevé-2 system.

Degenerations in non-abeian case

All 10 Painlevé-5 systems can be obtained as the result of
limiting transitions from Painlevé-6 systems. In addition, two
more systems of Painlevé-5 type with k4 = 0 appear as limits.

Let us take three orbit reprentatives of Painlevé-6 and find the
whole degeneration scheme for them.



Рис.: Caption

Here we see another unexpected effect in the degeneration
procedure. The systems P 0

4 and P 0
2 have no Okamoto integral.

They are well-known Hamiltonian non-abelian Painlevésystems.



Example. Initial system of Painlevé-4 type :{
u′ = −u2 + 2uv − 2zu+ κ2,

v′ = −v2 + vu+ uv + 2zv + κ3.

Initial integral:

J = uv2 − uvu− κ3u+ κ2v − 2zuv.

Step-by-step transformation of the system and integral:

1. Change of variables:

z =
1

4
ε−3 − εZ, u(z) = −1

4
ε−3 − ε−1U(Z), v(z) = −2εV (Z).

System:{
U ′ = −U2 + V − 1

2Z + ε2 (4UV − 2ZU + κ2) +
1
16ε
−4,

V ′ = V U + UV + 1
2κ3 + ε2

(
−2V 2 + 2ZV

)
.



Integral:

J = ε(−4UV 2 + 4ZUV − 2κ2V ) + ε−1(2UV U − V 2 + κ3U + ZV )

+
1

8
ε−5V + ε−3(

1

2
V U − 1

2
UV − 1

4
κ3).

2. Change of parameters:

κ2 = −
1

16
ε−6, κ3 = 2κ.

System: {
U ′ = −U2 + V − 1

2Z + ε2(4UV − 2ZU),

V ′ = V U + UV + κ+ ε2(−2V 2 + 2ZV ).

Integral:

Ĵ = 4ε(−UV 2 + ZUV ) + ε−1(2UV U − V 2 + 2κU + ZV )

+1
2ε
−3(V U − UV − κ).



3. System after the limit ε→ 0:{
U ′ = −U2 + V − 1

2Z,

V ′ = V U + UV + κ.

Integral after the limit ε→ 0:

J2 = UV − V U.


