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Conjugate Curvilinear Coordinate Nets

We start from the linear system
diHk = By Hi, i # k,

where H; and rotation coefficients ; depend on N independent variables
k
re.
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Conjugate Curvilinear Coordinate Nets

We start from the linear system
diHk = By Hi, i # k,

where H; and rotation coefficients ; depend on N independent variables

rk

The compatibility conditions 9;(djHx) = 0;(0;Hi) for every triad of
distinct indices lead to the Lame system

iy = BiPi» 171 F# k.
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Conjugate Curvilinear Coordinate Nets

We start from the linear system
diHk = By Hi, i # k,

where H; and rotation coefficients ; depend on N independent variables
k

re.

The compatibility conditions 9;(djHx) = 0;(0;Hi) for every triad of

distinct indices lead to the Lame system
iy = BiPi» 171 F# k.

This system also can be obtained from the compatibility conditions
9i(0j1, ) = 9;(9ip, ) for every triad of distinct indices, where the vector
function 9, satisfies the adjoint linear system

3/‘/’/( = :Bkil/)iv i 7’é k.

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems 20 October 2021 2/43



Lax Representation

According to a standard approach in the theory of integrable systems, we
say:
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Lax Representation

According to a standard approach in the theory of integrable systems, we
say:
the Lame system

aiﬁjk = 5ji;5ik' i #j#Fk

is integrable by the Inverse Scattering Transform
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Lax Representation

According to a standard approach in the theory of integrable systems, we
say:
the Lame system

aiﬁjk = 5ji;5ik' iFjFEk
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

diHy = By Hi, i # k,
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Lax Representation

According to a standard approach in the theory of integrable systems, we
say:
the Lame system

aiﬁjk = 5ji;5ik' iFjFEk
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

diHy = By Hi, i # k,

or the adjoint Lax representation

ail/’k = .Bki‘/"iv i # k.
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Lax Representation

According to a standard approach in the theory of integrable systems, we
say:
the Lame system

aiﬁjk = 5ji;5ik' iFjFEk
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

OdiHk = By Hi, i # k,
or the adjoint Lax representation

ail/’k = .Bkil/"iv i # k.

The Lame system is a 3D integrable system.
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Lax Representation

According to a standard approach in the theory of integrable systems, we
say:
the Lame system

aiﬁjk = 5ji;5ik' iFjFEk
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

OdiHk = By Hi, i # k,
or the adjoint Lax representation
ailPk = .Bkil/"iv i # k.

The Lame system is a 3D integrable system. Indeed, it is easy to see for
every three distinct indices:

8,1523 - .321513' 8,1/532 = ,331,312,
ar2.313 = .312ﬁ23' 8r2ﬁ31 = ,532ﬁ21.
ar3ﬁ12 = .313[5321 ar3521 = .323531-
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Conjugate Egorov Curvilinear Coordinate Nets

The Lame system
ai.Bjk = :Bji:Bik' i #JFk

is determined by two alternative Lax representations

diHk = BiHi. ailIJk ol - i # k.
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Conjugate Egorov Curvilinear Coordinate Nets

The Lame system

ai.Bjk = :Bji:Bik' i #JFk

is determined by two alternative Lax representations

diHk = BiHi. ailIJk ol - i # k.
Now we consider the 3D symmetric reduction

Bi = Bir i # k.
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Conjugate Egorov Curvilinear Coordinate Nets

The Lame system
aiﬁjk = :Bji:Bik' i #JFk
is determined by two alternative Lax representations
diHi = By Hi, i, = B, 1 # k.
Now we consider the 3D symmetric reduction

Bix = Buir 17 k.
In this case, both Lax representations coincide with each other (i.e.

P, = H;). This means, symmetric rotation coefficients 8, of conjugate
Egorov curvilinear nets satisfy the Lame—Egorov system

ai,Bjk = ,Bj,',B,'kv ’7&] 7& k; lBik = IBki' i# k.

Again in the three dimensional case we have only three equations (instead
of six equations without the symmetric reduction)

ar1ﬁ23 = ,321,313, ar2.313 = ﬁ12ﬁ23, ar3.312 = 513ﬁ32-
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Conjugate Linearly Degenerate Curvilinear Coordinate Nets

The Lame system
ai‘Bjk = :Bji:Bik' I#J#k

is determined by two alternative Lax representations

diHk = By Hi, 0 = By 17 k.
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Conjugate Linearly Degenerate Curvilinear Coordinate Nets

The Lame system
ai‘Bjk = :Bji:Bik' I#J#k
is determined by two alternative Lax representations

diHk = By Hi, 0 = By 17 k.

Now we consider the reduction

0iBrk = BitBrir Ok B = By 1 7 k.

In this case the Lame system is the so called Darboux solvable. All
rotation coefficients B, (r) can be found explicitly. This case is known in
the theory of semi-Hamiltonian hydrodynamic type systems as linearly
degenerate. See: E.V. Ferapontov (1991).
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Conjugate Temple Curvilinear Coordinate Nets

The Lame system
iy = BiPi. 171 F# k

is determined by two alternative Lax representations

diHk = By Hi. 9y = By 1 # k.
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Conjugate Temple Curvilinear Coordinate Nets

The Lame system
iy = BiPi. 171 F# k

is determined by two alternative Lax representations

diHk = By Hi. 9y = By 1 # k.

Now we consider the second reduction

9Bk = BiBri» OkInByi = Buer 1 F# k.
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Conjugate Temple Curvilinear Coordinate Nets

The Lame system
iy = BiPi. 171 F# k
is determined by two alternative Lax representations
diHk = By Hi. 9y = By 1 # k.
Now we consider the second reduction
0iBuk = BiBriv Ok InBy; = Puyr 1 F# k.

Obviously, in this case the Lame system is Darboux solvable as well as in
the linearly degenerate case selected by the first reduction

9B = BiBri» Ok N By = Byyer 1 F k.

This case is known in the theory of semi-Hamiltonian hydrodynamic type
systems as hydrodynamic type systems of Temple’s class.
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Conjugate Egorov Linearly Degenerate Curvilinear

Coordinate Nets

The Lame—Egorov system

0iBj = Bjibicr 1717 ki By =B 17k

is determined by the Lax representation

diHy = By Hi, i # k.
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Conjugate Egorov Linearly Degenerate Curvilinear

Coordinate Nets

The Lame—-Egorov system
ai:Bjk = ﬁji:Bik' i#FJF Kk By =B 1 Fk
is determined by the Lax representation
OdiHk = By Hi, i # k.
Now we consider the first reduction (linearly degeneracy)

9iBik = BuBrir OkInPy = Pyr 1 7 k.

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems

20 October 2021 7/43



Conjugate Egorov Linearly Degenerate Curvilinear

Coordinate Nets

The Lame—-Egorov system
ai:Bjk = ﬁjfﬁik- i#FJF Kk By =B 1 Fk
is determined by the Lax representation
OdiHk = By Hi, i # k.
Now we consider the first reduction (linearly degeneracy)
9B = BiucBriv Ik In By = Puer 17 k-

This particular class of conjugate curvilinear coordinate nets is not yet
described.
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Conjugate Egorov—Temple Curvilinear Coordinate Nets

The Lame—Egorov system
af:Bjk = ﬁjiﬁik' i #jF ki By =By 17k
is determined by the Lax representation

diHy = By Hi, i # k.
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Conjugate Egorov—Temple Curvilinear Coordinate Nets

The Lame—Egorov system
af:Bjk = ﬁjiﬁik' i #jF ki By =By 17k
is determined by the Lax representation
diHk = By Hi, i # k.
Now we consider the second reduction (Temple's class)

9iBrk = BixBriv OkInPBy; = By, 1 7 k.
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Conjugate Egorov—Temple Curvilinear Coordinate Nets

The Lame—Egorov system
af:Bjk = ﬁjiﬁik' i #jF ki By =By 17k
is determined by the Lax representation
diHk = By Hi, i # k.
Now we consider the second reduction (Temple's class)

9iBrk = BixBriv OkInPBy; = By, 1 7 k.

This particular class of conjugate curvilinear coordinate nets is not yet
described.
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Conjugate Temple Linearly Degenerate Curvilinear

Coordinate Nets

The Lame system
ai:Bjk = IBjnB;kv i #J#k,

is determined by two alternative Lax representations

diHk = By Hi, i = By; 17 k.
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Conjugate Temple Linearly Degenerate Curvilinear

Coordinate Nets

The Lame system
ai:Bjk = IBjnB;kv i #J#k,

is determined by two alternative Lax representations

diHk = By Hi, i = By; 17 k.

Now we consider both reductions simultaneously

9iBuk = BiBrir Ok InBy = Prr Ok Iy = Bypr 1 F k.
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Conjugate Temple Linearly Degenerate Curvilinear

Coordinate Nets

The Lame system
ai:Bjk = IBjnB;kv i #J#k,
is determined by two alternative Lax representations
diHk = By Hi, i = By; 17 k.
Now we consider both reductions simultaneously
9iBuk = BiBrir kN By = PBryer kNP = Bur 1 7# k.

Then all above nonlinear equations can be written in the compact form
(no restrictions on coincided indices!)

ai.Bjk = ;Bji:Bik'

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems 20 October 2021 9 /43



Conjugate Temple Linearly Degenerate Curvilinear

Coordinate Nets

The Lame system
ai:Bjk = IBjnB;kv i #J#k,
is determined by two alternative Lax representations
diHk = By Hi, i = By; 17 k.
Now we consider both reductions simultaneously
9iBuk = BiBrir kN By = PBryer kNP = Bur 1 7# k.

Then all above nonlinear equations can be written in the compact form
(no restrictions on coincided indices!)

ai.Bjk = ;Bji:Bik'

This particular class of conjugate curvilinear coordinate nets is described
below.
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Let us introduce the N x N matrix & with diagonal entries r!

ooV (so
that €’ = r') and off-diagonal entries €’ =const, k # i.
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Let us introduce the N x N matrix & with diagonal entries r!
that €’ = r') and off-diagonal entries €’ =const, k # i.
Define another matrix B = —e 1

ooV (so
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Let us introduce the N x N matrix & with diagonal entries r*,..., rN (so
that €’ = r') and off-diagonal entries €’ =const, k # i.
Define another matrix B = —e 1

Then one can see that the coefficients B, of this matrix B satisfy the
nonlinear system

alBJk ﬁjlﬁlk
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Let us introduce the N x N matrix & with diagonal entries r*,..., rN (so
that €’ = r') and off-diagonal entries €’ =const, k # i.
Define another matrix B = —e 1

Then one can see that the coefficients B, of this matrix B satisfy the
nonlinear system

alBJk ﬁjlﬁlk

Indeed, differentiation of B, €™ = —&}, with respect to any variable r/
implies

0= ;Bimajemk + (aj‘Bim)emk

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems 20 October 2021 10 / 43



A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Let us introduce the N x N matrix & with diagonal entries r*,..., rN (so
that €’ = r') and off-diagonal entries €’ =const, k # i.
Define another matrix B = —e 1

Then one can see that the coefficients B, of this matrix B satisfy the
nonlinear system

af:Bjk = ﬁjiﬁik-
Indeed, differentiation of B, €™ = —&}, with respect to any variable r/
implies
0= ;Bimajemk + (aj‘Bim)emk'
Multiplying by the matrix ﬁ one can obtain

0= B (97€™)Bys + (3jBim )€™ By
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Let us introduce the N x N matrix & with diagonal entries r*,..., rN (so
that €’ = r') and off-diagonal entries €’ =const, k # i.
Define another matrix B = —e 1

Then one can see that the coefficients B, of this matrix B satisfy the
nonlinear system

af:Bjk = ﬁjiﬁik-
Indeed, differentiation of B, €™ = —&}, with respect to any variable r/
implies

0= B;,9j€™ + (3B, )€™
Multiplying by the matrix ﬁ one can obtain
0 = B (9j€™)Bys + (9B )€™ Bys-
Taking into account B, €™ = —d), finally we have
9jBis = .Bim(ajemk)ﬁks = :Bij:Bjs'
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Vice Versa: Assume that the coefficients B, of the N x N matrix f satisfy
the nonlinear system

aiﬁjk = ‘Bji:Bik'
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Vice Versa: Assume that the coefficients B, of the N x N matrix f satisfy
the nonlinear system

aiﬁjk = ‘Bji:Bik'

. . -1
Define another matrix & = —B .
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Vice Versa: Assume that the coefficients B, of the N x N matrix f satisfy
the nonlinear system

aiﬁjk = ‘Bji:Bik'
Define another matrix & = —B_l.

Multiplying both sides of the above nonlinear system 0;8., = ,le-,Bik by e’
from the left, and by €%9 from the right, we obtain

€ (3iBy )M = (¢7B;) (Bye ) = 8707,
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Vice Versa: Assume that the coefficients B, of the N x N matrix f satisfy
the nonlinear system

aiﬁjk = ‘Bji:Bik'
Define another matrix & = —B_l.
Multiplying both sides of the above nonlinear system a,-/sjk = ,le-,Bik by e’
from the left, and by €%9 from the right, we obtain
epj(aiﬁjk)ekq = (epj:Bji)(;Bikekq) = 0707

Again, taking into account ,Bkme’"i = —&!, the L.h.s. of the above
expression becomes

epj(aiﬁjk) e 1=e”[9;(B Jke 9) - B0 € )=[9 i(epjﬁjk)_(aiepj)ﬁjk]ekq:aiepq
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A Complete Description of Conjugate Temple Linearly

Degenerate Curvilinear Coordinate Nets

Vice Versa: Assume that the coefficients B, of the N x N matrix f satisfy
the nonlinear system

aiﬁjk = ‘Bji:Bik'

Define another matrix & = —B_l.
Multiplying both sides of the above nonlinear system a,-/sjk = ﬁj,-,Bik by e’
from the left, and by €%9 from the right, we obtain

epj(aiﬁjk)ekq = (epj:Bji)(;Bikekq) = 0707
Again, taking into account ﬁkme’"i = —&!, the L.h.s. of the above
expression becomes
€pj(aiﬁjk)€kq_€pj[a( Jke 9) - B0 € )=[9 i(epjﬁjk)_(aiepj)ﬁjk]ekq:aiepq

This means: the general solution of the system 9,eP9 = (5?(5? is determined
by the N x N matrix & with diagonal entries r1,..., r/V (so that € = r')
and off-diagonal entries €’k =const, k # i.
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Orthogonal Curvilinear Coordinate Nets

The Lame system
ai.Bjk = :Bji:Bik' i #JFk

is determined by two alternative Lax representations

diHk = ByHi, 9ihy = B 1 7 k.
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Orthogonal Curvilinear Coordinate Nets

The Lame system
aiﬁjk = :Bji:Bik' i #JFk
is determined by two alternative Lax representations
diHk = By Hi. 9y = By 17 k.
Now we consider the 3D reduction (here ¥, ; = 9;¢,;)
Hi= 914 2 B
m#i
The above Lax representations are connected to each other via this

differential substitution of first order, if rotation coefficients §,, satisfy to
extra set of nonlinear equations (the Gauss system)

0iBix + Py + Z BmiBmk =0, 1 7 k.
m#i,k
Thus, the Darboux—Lame system is

ai.Bjk = :Bji:Bik' i #J#k iy + 0Py + E BmiPmk =0, 1 # k.
mZ=i k
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Egorov Orthogonal Curvilinear Coordinate Nets

The Darboux—Lame system

0y = BiPiwr 1 #J# K By + P+ Y BuiPmk =0. i #k,

m#i,k
is determined by the Lax representation (here ¢, ; = d;¢;)

diHy = ﬁikHiv ail/’k = ,31«'1/’/' i #k Hi= lpi,i + Zﬁmﬂ/’m-
m#i
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Egorov Orthogonal Curvilinear Coordinate Nets

The Darboux—Lame system
aiﬁjk = :Bji:Bik' i #JF ki OiBy + kP + Z BrmiBmc =0, 17k,
m#i,k
is determined by the Lax representation (here ¢, ; = d;¢;)
diHk = ByHis 9ipy = Bty 1 # ki Hi=1;; + Zﬁmﬂ/’m-
m#i
Now we consider the 3D symmetric reduction B, = B,..
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Egorov Orthogonal Curvilinear Coordinate Nets

The Darboux—Lame system
aiﬁjk = :Bji:Bik' i #JF ki iy + kP + Z BniBmk =0, 1 # k,
m#i,k
is determined by the Lax representation (here ¢, ; = d;¢;)
diHy = ﬁikHiv ai‘/’k = ,31«'1/’/' i #k Hi= lpi,i + Zﬁmﬂ/’m-
m#i

Now we consider the 3D symmetric reduction B, = B,..
Then the Gauss system

0iBi + kB + Y BmiBmk =0, 1 # K,
m#i,k
reduces to the form 5, = 0, while the differential substitution
Hi = lpi,i + Zleile
m#i
becomes H; = 01;, where § = Xd/dr™ is a shift symmetry operator.
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Frobenius Manifolds

The Darboux—Lame—Egorov system
ai.Bjk = :Bji:Bik' i #j#k 0By =0,
is determined by the Lax representation (here ¢, ; = d;¢;)
8,-Hk = :BikHi' i 7£ k; /\H,' = 5H,',

where A is a spectral parameter.
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Frobenius Manifolds

The Darboux—Lame—Egorov system
ai.Bjk = :Bji:Bik' i #j#k 0By =0,
is determined by the Lax representation (here ¢, ; = d;¢;)
8,-Hk = :BikHi' i 7£ k; /\H,' = 5H,',

where A is a spectral parameter. This is 2D integrable system, obtained on
the intersection of two 3D reductions (Egorov case + Orthogonal case).
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Frobenius Manifolds

The Darboux—Lame—Egorov system
ai.Bjk = :Bji:Bik' i #j#k 0By =0,
is determined by the Lax representation (here ¢, ; = d;¢;)
8,-Hk = ,B,-kH,', i 7£ k; /\H,' = 5H,',

where A is a spectral parameter. This is 2D integrable system, obtained on
the intersection of two 3D reductions (Egorov case + Orthogonal case).
The concept of a Frobenius manifold appears in extension of the
Darboux—Lame—Egorov system:

aiﬁjk = :Bji;Bik' i#j#F ki 6py =0, R’ﬁik = =B

where R = £r™9/9r™ is the Euler (scaling) symmetry operator.
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries

N (so that el = i) and off-diagonal entries

ek = ek =const, k # i.

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems 20 October 2021 15 / 43



A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries

N (so that el = i) and off-diagonal entries

e’k = ekl =const, k # i. Define another symmetric matrix B = —&!.
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries
N (so that el = i) and off-diagonal entries

e’k = ek =const, k # i. Define another symmetric matrix 3 = _—e L
Then the symmetric coefficients B, of this matrix B satisfy the nonlinear
system

OiBj = BjiBix Bix = Bri-
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries
N (so that €” = r') and off-diagonal entries
e’k = ekl =const, k # i. Define another symmetric matrix B = —&!.
Then the symmetric coefficients B, of this matrix B satisfy the nonlinear
system

aiﬁjk = :Bji:Bik' B = Bui-
This system belongs to Temple's class and to a linearly degenerate type,
simultaneously.
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries
N (so that el = i) and off-diagonal entries

e’k = ek =const, k # i. Define another symmetric matrix 3 = _—e L
Then the symmetric coefficients B, of this matrix B satisfy the nonlinear
system

aiﬁjk = :Bji:Bik' B = Bui-
This system belongs to Temple's class and to a linearly degenerate type,
simultaneously.

This problem was investigated by B.A. Dubrovin, S.A. Zykov and MVP
(2011).
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries
N (so that el = i) and off-diagonal entries

e’k = ek =const, k # i. Define another symmetric matrix 3 = _—e L
Then the symmetric coefficients B, of this matrix B satisfy the nonlinear
system

aiﬁjk = :Bji:Bik' B = Bui-
This system belongs to Temple's class and to a linearly degenerate type,
simultaneously.

This problem was investigated by B.A. Dubrovin, S.A. Zykov and MVP
(2011). This research is incomplete!
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries
N (so that el = i) and off-diagonal entries

e’k = ek =const, k # i. Define another symmetric matrix 3 = _—e L
Then the symmetric coefficients B, of this matrix B satisfy the nonlinear
system

aiﬁjk = :Bji:Bik' B = Bui-
This system belongs to Temple's class and to a linearly degenerate type,
simultaneously.
This problem was investigated by B.A. Dubrovin, S.A. Zykov and MVP
(2011). This research is incomplete! This means: constant coefficients e
are not completely described for the orthogonal case 9;f;, = B;B;.

Bi = Buir 0By = 0.
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A Simplest Nontrivial Example of Egorov Curvilinear

Coordinate Nets

Let us introduce the N x N symmetric matrix & with diagonal entries
N (so that el = i) and off-diagonal entries

e’k = ek =const, k # i. Define another symmetric matrix 3 = _—e L
Then the symmetric coefficients B, of this matrix B satisfy the nonlinear

system

aiﬁjk = :Bji:Bik' B = Bui-
This system belongs to Temple's class and to a linearly degenerate type,
simultaneously.
This problem was investigated by B.A. Dubrovin, S.A. Zykov and MVP
(2011). This research is incomplete! This means: constant coefficients e
are not completely described for the orthogonal case 9;f;, = B;B;.
B = B 6B, = 0. This means: constant coefficients €’ are not
completely described for the case of Frobenius manifolds d;f;, = BB,

Bix = Bi» 0By =0, 'LA-‘):Bik = =B
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Lax Representation

According to standard approach in the theory of integrable systems, we
say:
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Lax Representation

According to standard approach in the theory of integrable systems, we
say:
the Lame system

afﬁjk = :Bji:Bikv "#J' 7é k

is integrable by the Inverse Scattering Transform
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Lax Representation

According to standard approach in the theory of integrable systems, we
say:
the Lame system

afﬁjk = :Bji:Bikv "#J' 7é k
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

diHy = By Hi, i # k,
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Lax Representation

According to standard approach in the theory of integrable systems, we
say:
the Lame system

afﬁjk = :Bji:Bikv "#J' 7é k
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

diHk = By Hi, i # k,
or the adjoint Lax representation

ail/’k = .Bki‘/"iv i # k.
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Lax Representation

According to standard approach in the theory of integrable systems, we
say:
the Lame system

afﬁjk = :Bji:Bikv "#J' 7é k
is integrable by the Inverse Scattering Transform, because this system has
the Lax representation

diHk = By Hi, i # k,
or the adjoint Lax representation

ail/’k = .Bki‘/"iv i # k.

We remind that the Lame system is a 3D integrable system.
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Alternative Approach. Exceptional Lax Representations

However, we can follow to an alternative strategy.
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Alternative Approach. Exceptional Lax Representations

However, we can follow to an alternative strategy.
One can select any pair of particular solutions H; and H; of the first linear

system
diH = By Hi, i # k.

Here we remind that independent variables are rk. So, 9, = a9/0rk.

20 October 2021 17 / 43

Quasilinear Systems

Maxim Pavlov (Lebedev Physical Institute T



Alternative Approach. Exceptional Lax Representations

However, we can follow to an alternative strategy.
One can select any pair of particular solutions H; and H; of the first linear

system
diH = By Hi, i # k.

Here we remind that independent variables are rk. So, 9, = a9/0rk.
Now we introduce an N component hydrodynamic type system

=",
whose characteristic velocities
) H;
pr) =z
H;

This hydrodynamic type system is integrable by Tsarev's Generalised
Hodograph Method. In this construction: Riemann invariants r¥ are
functions of two independent variables x and t only.
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Commuting Flows

Integrable N component hydrodynamic type system

=N
has infinitely many commuting flows (T is the so called group parameter in
the Lie group analysis, or an auxiliary time variable)

r=C(0n
This means, that the Riemann invariants r' no longer depend on two

independent variables x and t only. Now, the Riemann invariants r’
depend on three independent variables x, t, T simultaneously.
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Commuting Flows

Integrable N component hydrodynamic type system

=N
has infinitely many commuting flows (T is the so called group parameter in
the Lie group analysis, or an auxiliary time variable)

=00
This means, that the Riemann invariants r' no longer depend on two
independent variables x and t only. Now, the Riemann invariants r’
depend on three independent variables x, t, T simultaneously.
This means, that the Riemann invariants ri(x, t,T) solve two N
component hydrodynamic type systems

A=u0n., =50,

where the time variable T is hidden in the first hydrodynamic type system,
while the time variable t is hidden in the second hydrodynamic type
system. Then both hydrodynamic type systems must commute with each

Ol
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Commuting Flows

The compatibility conditions (r}); = (r); lead to the Tsarev conditions
Wy Al
yk _ HI é'k o gl

Taking into account the definition of the Lame coefficients

L i# k.

8ky’
]/lk _ yi’
the Tsarev conditions show that both commuting hydrodynamic type
systems

8kInFI,-: /75/(,

= n=00r

have the same diagonal metric gx (r) = HZ.
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Commuting Flows

The compatibility conditions (r}); = (r); lead to the Tsarev conditions
Wy Al
yk _ HI é'k o gl

Taking into account the definition of the Lame coefficients

L i# k.

8ky’
]/lk _ yi’
the Tsarev conditions show that both commuting hydrodynamic type
systems

8kInFI,-: /75/(,

= n=00r

have the same diagonal metric gx (r) = HZ.

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems 20 October 2021 19 /



Integrability of Diagonalisable Hydrodynamic Type Systems

Any diagonalisable hydrodynamic type system
ri=u'(0)rl, i=12,.., N
is integrable by Tsarev's Generalised Hodograph Method
x+ ' (r)t=g'(r),
if and only if the integrability condition (here 9, = 9/drk)
ak]li ay’ . .
- == —, i#j#k
e N
is fulfilled. Here we remind that diagonal metric coefficients gk (r) = H?
are determined by

0;

_ o'
8kInH,- = kkﬂ T
B—H
while {'(r) satisfy to the linear system

0f = D), T4k

i # k,
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El's Nonlocal Kinetic Equation

El's integro-differential kinetic equation for dense soliton gas (2003)
fr + (sf)x =0,

s(n) =S+ [y G (W)[s(p) = s(n)] du,

where (1) = f(iy,x, t) is a distribution function and s(17) = s(17, x, t) is
the associated transport velocity. Here the variable # is the spectral
parameter in the Lax pair; the function S(77) (free soliton velocity) and the
kernel G(u, 1) (phase shift due to pairwise soliton collisions) are
independent of x and t. The kernel G(y,7) is assumed to be symmetric:
G(u,n) = G(n,u). This system describes the evolution of a dense soliton
gas and represents a broad generalisation of Zakharov's kinetic equation
for rarefied soliton gas. In this case

SO =, Gl = - tog |1,

the above system was derived by G. El as thermodynamlc limit of the KdV

AN itham eqliation
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El's Nonlocal Kinetic Equation. Zakharov Approximation

El's integro-differential kinetic equation for dense soliton gas (2003)

ft + (Sf)x - 01

s(n) =S(n) + [ G(u.n)f(u)ls(u) — s(n)] dp.

Taking into account the dependence S(17) = 4172, the integral equation

[ee]

s(7) = 41>+ [ Gu)F()ls(o) = s(n)] d
0

in the zero-order approximation is s(17) = 472 only. This means, in the
first-order approximation, one can obtain

s(7) = 412 + [ Gl ) () 4y = 4) .
0

It was exactly equation derived by V.E. Zakharov for rarefied gas.in 1971,
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (an iso-spectral case, 2010, G.A. El, A.M.
Kamchatnov, MVP, S.A. Zykov),

f(n,x,t)= Zuxté(iy n),
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (an iso-spectral case, 2010, G.A. El, A.M.
Kamchatnov, MVP, S.A. Zykov),

f(n,x,t)= Zuxté(iy n),

system
fr + (sf)x =0,

s(n) =S+ [5G (W)[s(p) = s(n)] du,
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (an iso-spectral case, 2010, G.A. El, A.M.
Kamchatnov, MVP, S.A. Zykov),

f(n,x,t)= Zuxté(q n),

system
fr + (sf)x =0,

s(n) =S(n) + [ G(u.n)f(u)ls(u) — s(n)] dy,

reduces to a n x n quasilinear system for u'(x, t),

ué = (uivi)x,
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (an iso-spectral case, 2010, G.A. El
Kamchatnov, MVP, S.A. Zykov),

f(n,x,t)= Zuxté(iy n),

system
fr + (sf)x =0,

s(n) =S + [o Gmmf(u)[s(w) —s(n)] dp,
reduces to a n X n quasilinear system for u'(x, t),
ul = (u'v'),,
where v/ can be recovered from the linear system (here &

V — g 4 Z eml m v Vi), eki — G(Wk
m#i

=-5(1"))
n), kA

Quasilinear Systems
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Parametrisation

Now we introduce the new field variables r' by the formula

. 1 .
rI:_F 14 Z.emlum
m#i
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Parametrisation

Now we introduce the new field variables r' by the formula

. 1 .
rI:_F 14 Z'emlum
m#i

In these dependent variables r', the quasilinear system
ol = (V).

reduces to a diagonal form
P i
ri=v'r,

where velocities v/ can be expressed in terms of Riemann invariants as
follows. Let us introduce the N X N matrix & with diagonal entries
N (so that € = r') and off-diagonal entries

e =G’ "), k#i.
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Parametrisation

Now we introduce the new field variables r' by the formula

. 1 .
rI:_F 14 Z'emlum
m#i

In these dependent variables r', the quasilinear system
ol = (V).

reduces to a diagonal form
P i
ri=v'r,

where velocities v/ can be expressed in terms of Riemann invariants as
follows. Let us introduce the N X N matrix & with diagonal entries

N (so that el = ri) and off-diagonal entries
ek =G(n',n*), k#i.
Define another symmetric matrix B = —&~*.
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Tsarev's Generalised Hodograph Method

Denote S, the matrix elements of the matrix B (indices i and k are
allowed to coincide). Then we obtain the following formulae for u’, v':
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Tsarev's Generalised Hodograph Method

Denote S, the matrix elements of the matrix B (indices i and k are
allowed to coincide). Then we obtain the following formulae for u’, v':

) N . 1 N
u'=Y B V' =7 ) E"Br
m=1

Then the general solution of the diagonal system

N )
ri=v'r,

is determined by

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems
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Tsarev's Generalised Hodograph Method

Denote S, the matrix elements of the matrix B (indices i and k are
allowed to coincide). Then we obtain the following formulae for u’, v':

N . 1 N
m
:Zﬁmi’ VI:?ZGV lei'
m=1 m=1

Then the general solution of the diagonal system

N )
rH=v'r

is determined by
x+&t=P(r)—=rPl(r)= Y _e™P,(r"), i=12..N,
m#i
where P;(r'), i =1,..., N, are arbitrary functions.

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems
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Tsarev's Generalised Hodograph Method

Under the re-parametrization

Pl/(/(ér) — _‘Pk(g)

f(¢)
the generalized hodograph solution
x+&t=P(r)=rPl(ry= Y e™P,(r"), i=12..N,
m#i
becomes
Ccp o /qu(é‘) o
L] @
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Tsarev's Generalised Hodograph Method

Now we consider the particular choice of f(&) defined as f(&) = / Rk (&),
where p

Re(8) = TT(Z—Enm).

m=1
and E; < E; < --- < Ek are real constants (K =2N +1 and
K = 2N + 2 for odd and even number of branch points of this

hyperelliptic curve of a genus N); and ¢, ({) being arbitrary polynomials in
¢ of degrees less than N.
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Tsarev's Generalised Hodograph Method

Now we consider the particular choice of f(&) defined as f(&) = / Rk (&),

where
K

Re(8) = TT(Z—Enm).

m=1
and E; < E; < --- < Ek are real constants (K =2N +1 and
K = 2N + 2 for odd and even number of branch points of this
hyperelliptic curve of a genus N); and ¢, ({) being arbitrary polynomials in
¢ of degrees less than N.
Then the generalized hodograph solution

647

ml

m#i
describes quasiperiodic solutions of the form

reg,(6)de oo dé -
x—i—l:,'t—/ RK(§ m?g, / RK i=1,2,... N
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A Nijenhuis tensor

Recall that, given an affinor V,i, its Haantjes tensor is defined by the
formula

o = NG VPV = VIV = NE VAV, 4+ NE VY,

where . ‘ . .
ik = VPO, Vi = VP20,V — V(0 V] — 9k Vf)

is a Nijenhuis tensor.

20 October 2021 28 /

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems



A Nijenhuis tensor

Recall that, given an affinor V,i, its Haantjes tensor is defined by the
formula

o = NG VPV = VIV = NE VAV, 4+ NE VY,

where

i yP i p i iy \/P P

jk — VJ dp Vi — Vkapvj - Vp(aka _aij )
is a Nijenhuis tensor.
In a generic case all characteristic velocities u* are pairwise distinct. If all
components of a Nijenhuis tensor vanish, then corresponding
hydrodynamic type system

up = Vi(u)ug

can be reduced to the totally decoupled form
o = ' ()T

by an appropriate invertible point transformation &*(u),
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A Haantjes tensor

So a Haantjes tensor is defined by the formula

o= N VPV = NEVAV] = NEVIVE + NE VIV,

while a Nijenhuis tensor is

e = VP9,V — VP9,V — Vi(9; V) — ik V).
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A Haantjes tensor

So a Haantjes tensor is defined by the formula

o= N VPV = NEVAV] = NEVIVE + NE VIV,

while a Nijenhuis tensor is
e = VPO,V — V0o,V — V(9 VF — 9, V7).

In a generic case all characteristic velocities u* are pairwise distinct. If all
components of a Haantjes tensor vanish, then corresponding hydrodynamic
type system

ul = Vi(u)uk

X

can be diagonalised, i.e. rewritten in the Riemann invariants
P i i
Iy = ]/l (r)rx

by an appropriate invertible point transformation r*(u).
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A Haantjes tensor and Integrable Hydrodynamic Type

Systems

If all components of a Haantjes tensor

_;k = N/Iarvjpvkr - Nﬁvplvkr - NrF;<VI-;\/Jr + le;(\/fl fo

vanish,
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A Haantjes tensor and Integrable Hydrodynamic Type

Systems

If all components of a Haantjes tensor

_;k = N/I)rvjpvkr - Nﬁvplvkr - NrF;<VI;\/Jr + le;(\/fl fo

vanish, but not all characteristic velocities yk are pairwise distinct, then
corresponding hydrodynamic type system

up = Vi (u)uy

cannot be diagonalised, i.e. cannot be rewritten in the Riemann
invariants

H=p (0.
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A Haantjes tensor and Integrable Hydrodynamic Type

Systems

If all components of a Haantjes tensor

_;k = N/I)rvjpvkr - Nﬁv/;vkr - NrF;<VI-;\/Jr + le;(\/fl fo

vanish, but not all characteristic velocities yk are pairwise distinct, then
corresponding hydrodynamic type system

up = Vi (u)uy

cannot be diagonalised, i.e. cannot be rewritten in the Riemann
invariants

=)
The Statement: If a hydrodynamic type system is integrable by Tsarev’s

Generalised Hodograph Method, then all components of a Haantjes tensor
vanish.
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A Haantjes tensor and Integrable Hydrodynamic Type

Systems

If all components of a Haantjes tensor

_;k = N/I)rvjpvkr - NJ‘:VFI)V/: - NrF;<VI-;\/Jr + le;(\/fl fo

vanish, but not all characteristic velocities yk are pairwise distinct, then
corresponding hydrodynamic type system

up = Vi (u)uy

cannot be diagonalised, i.e. cannot be rewritten in the Riemann
invariants

=)
The Statement: If a hydrodynamic type system is integrable by Tsarev’s
Generalised Hodograph Method, then all components of a Haantjes tensor
vanish. Then this hydrodynamic type system can be reduced to a
block-diagonal structure by an appropriate invertible point transformation

% (u).
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (a non-isospectral case, 2012, G.A. El,
V.B. Taranov, MVP),

N

Fl,xt) =) u'(x,t) 6(p —11'(x, 1)),

i=1
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (a non-isospectral case, 2012, G.A. El,
V.B. Taranov, MVP),

Fl,xt) =) u'(x,t) 6(p —11'(x, 1)),

i=1
system
fr + (sf)x =0,
s(in) =S+ [y G (1) [s(u) = s()] du,
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (a non-isospectral case, 2012, G.A. El,
V.B. Taranov, MVP),

Fl,xt) =) u'(x,t) 6(p —11'(x, 1)),

i=1

system

f;f + (Sf)x = 0,

s() =S+ [5G ()ls(u) —s(n)] du,
reduces to a 2N x 2N quasilinear system for v'(x, t) and 7' (x, t),

i

up= (V)% =V,
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Hydrodynamic Reductions. Dirac Delta-Functional Ansatz

Under a delta-functional ansatz (a non-isospectral case, 2012, G.A. El,
V.B. Taranov, MVP),

Fl,xt) =) u'(x,t) 6(p —11'(x, 1)),

i=1

system

f;f + (Sf)x = 0,

s(n) =S+ [y G (1) [s(u) = s()] du,
reduces to a 2N x 2N quasilinear system for v'(x, t) and 7' (x, t),
v = (V) =i,
where v/ can be recovered from the linear system (here & = -S(1")
V — g 4 Z eml m v Vi), eki — G(ﬂk,;,li>' k # i.
m#i
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Block-Diagonal Hydrodynamic Type Systems

Introducing new field variables
(1_|_ Z eml m) '
m#i

up = (u'V')x, =V,

this 2N x 2N quasilinear system
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Block-Diagonal Hydrodynamic Type Systems

Introducing new field variables
i _ _l 1+ Z €mi m
r=-_ el
m#i
this 2N x 2N quasilinear system
up= (uv)e =V
can be rewritten in a block-diagonal form

i

[N ) I} N )
rt_vrx+p17x' nt_vﬂx'
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Block-Diagonal Hydrodynamic Type Systems

Now we study integrability aspects of quasilinear systems

ul = Vi(u)uk

X

whose matrix V consists of N Jordan blocks of size 2 x 2:

= v 4 i

= v,
i=1,..., N, where the coefficients vi(r,iy) and pi(r,iy) are functions of
the N dependent variables r = (r!,..., r"V) and N dependent variables

n=("....n").
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Block-Diagonal Hydrodynamic Type Systems

Now we study integrability aspects of quasilinear systems

ul = Vi(u)uk

whose matrix V consists of N Jordan blocks of size 2 x 2:

L= v+ P,

Ny = V',
i=1,..., N, where the coefficients vi(r,iy) and pi(r,iy) are functions of
the N dependent variables r = (r!,...,r"V) and N dependent variables
n=(n"...q1").

Their commuting flows u), = W/ (u)uf are in the same form (2021, E.V.
Ferapontov, MVP)

Then unknown expressions w'(r,7), g'(r, ) can be found from the

compatibility conditions (r}); = (r{)y, (U;)t =)y, i=12..,N.
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Block-Diagonal Hydrodynamic Type Systems

Indeed, the compatibility conditions

()e=(rD)y, (1y)e=(n)y, i=12.,N
lead to the set of equations
wi = aiq', w, =biq' +q,,

where we denote

Vi,- Vi — pr:
aI = r" 1 bl = 1 i .
p p
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Block-Diagonal Hydrodynamic Type Systems

Indeed, the compatibility conditions
()e=(rD)y, (1y)e=(n)y, i=12.,N
lead to the set of equations
wi=aiq' w = biq +q

where we denote

Vi,- Vi — pr:
aI = r" 1 bl = 1 i
p p

wh = a;(w —w'), w=bi(w —w')+a;q,

q; = ci(w —w') —a;d’, q); = di(w —w') + c;d/ — byd,
where we denote

i i - i i i n — o~
vl Vi ajjp/ p,;+aijp' P,71+bup cijp!
vl —v! v —v!

vi—vi
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Integrability Conditions |

The list of integrability conditions for every pair of distinct indices is

aj i = 0, aj i = ajaji + aCjj;

Ay = 0, b,-j,,i = bjaj + ajicjj + a;idj;
b,-'rj = 2a,-jaj,- + 23,'C,'j,
Ay = ajjbjj — cjaji + bicjj + Cijris
bi’,?j = 2ajcji + 2bjjaji + 2a;djj,
bij,ﬂ’ = b,‘jbj,‘ + a,-jdj,- — d,-jaj,- — CjjCji + b,‘d,'j + d,-j',i;

b

C— h.a. b 22 C— .
3 = bjajj — ajbj; aj, ajj i = bij ri;

C;j’,j = bjC,'j — ajd,-j — 2a,-jc,-j, C,-j’ﬂj = d,-j’,j.

20 October 2021
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Integrability Conditions Il

The list of integrability conditions for every triad of distinct indices is
ajj k= ajjajk + ajkakj — ajaik.

ajj v = ajjbjk + aikcij + bikak; — ajjbik,
bjj ;« = bijajx + aikbkj + ajjcik — aibjj.

b,-jﬂk = ajjdjk + aikdkj + bijbjx + bixbyj — bjjbi.

Cjj,rk = Cijajk + Cikakj — Cijaik — Cikajj.
Cijpk = Cijbjk + CiCrj + dikakj — ajjdic — cijbik,

d,-j’,k = djjajk + cjjCjk + Cikbkj — aikdjj — cikbj;.

dij',?k = ¢jjdjk + cixdyj + djjbjx + dicbyj — bjjdix — b dj;.
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Commuting Flows

The block-diagonal system

i i

i i i
e =VrntpPiha My=Vi

possesses infinitely many commuting block-diagonal flows

[ ] 0,0 [
ry_WrX+qux’ T]y_erx’

leligomﬁ q’:l
u T ml u' \ oz

Here p/(77") are N arbitrary functions of one variable and the functions
¢'(n',....n") satisfy the relations 0,«¢' = €*'u¥, k # i. The general

commuting flow depends on 2N arbitrary functions of one variable: N

Q - 71 o q A o an N
Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems
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Conservation Laws

Conservation laws h; = g, provide an alternative way to derive
integrability conditions for the block-diagonal system
n=vintpn. =
Their existence leads to a system of second-order linear PDEs
h,i,i = bih,i — a,-h,7,', h,/”j = aj,-hnj + Cj,‘h,j + b,‘jhri,

h,ii = a,-jh,; + aj,-h,j, h,7;,7j = d,'jhri + dj,‘hrj + b,jh,7 + bj,hq,,

where g,i = vih,f, 8y = pih,/ + Vih,7/.
The general conservation law has the form (c7(77") are arbitrary functions)

(i_um ’"(77)+£0"’( )t (ZU"’V"'IP Z )X

where (') = (¢/)'¢ and v = /)'ek k # i. This general

conservation law depends on 2N arbitrary functlons of one variable: N
functions ¢’ (17'), plus extra N functions coming from
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Tsarev's Generalised Hodograph Method

If the hydrodynamic type system u; = V/(u)uy has a commuting flow
uy, = W(u)uy, where V(u) and W (u) are N x N matrices (the
commutativity conditions uy, = u,; impose differential constraints on V

and W),
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Tsarev's Generalised Hodograph Method

If the hydrodynamic type system u; = V/(u)uy has a commuting flow
uy, = W(u)uy, where V(u) and W (u) are N x N matrices (the
commutativity conditions uy, = uy; impose differential constraints on V/
and W), then the matrix relation

W(u) =1x+ V(u)t,

where [ is the N x N identity matrix, defines an implicit solution u(x, t).
Note that, due to the commutativity conditions, only N out of the above
N? relations will be functionally independent.
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Tsarev's Generalised Hodograph Method

If the hydrodynamic type system u; = V/(u)uy has a commuting flow
uy, = W(u)uy, where V(u) and W (u) are N x N matrices (the

commutativity conditions uy, = uy; impose differential constraints on V/
and W), then the matrix relation

W(u) =1x+ V(u)t,

where [ is the N x N identity matrix, defines an implicit solution u(x, t).
Note that, due to the commutativity conditions, only N out of the above
N? relations will be functionally independent. For commuting
block-diagonal systems

[N ) i [N )
rt_vrx+p77x' ﬂt_vﬂx’

n=wntdn, n,=wh,
the hodograph formula becomes

wi(rg) =x+vi(rg)t, g (rg)=p(ryt,

which is a system of 2/ implicit relations for the 2V dependent variables,

Maxim Pavlov (Lebedev Physical Institute T Quasilinear Systems
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Tsarev's Generalised Hodograph Method

Denote B, the matrix elements of B (indices i and k are allowed to
coincide). Then we obtain the following formulae for u’, v/ and p’:

i N i 1 N m i 1 mi( . m i, m i
“:ZﬁmivV:ﬁ-ZC Buir P = — Ze,ﬁf(v —vu"+ ()]
m=1 U m= U\ m#i
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Tsarev's Generalised Hodograph Method

Denote B, the matrix elements of B (indices i and k are allowed to
coincide). Then we obtain the following formulae for u’, v/ and p’:

. N ) 1 N ) 1 ) ) )
u' = Zlﬁmi' vi= E Zlémlgmi' pl =7 <Z €T7;(Vm - Vl)um + (§’>/> ‘

u' m#i
Then the general solution of the block-diagonal system
= i+ i,
M = V'

is determined by
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Tsarev's Generalised Hodograph Method

Denote B, the matrix elements of B (indices i and k are allowed to
coincide). Then we obtain the following formulae for u’, v/ and p’:

N ) 1 N )
=Z&WW=726%WV—* Yo v —vhum + ()
m=1 U m=1 m#i
Then the general solution of the block-diagonal system

[ i i
rt._ V_rx_+p17x’

e = V'l
is determined by
i (Pf"_(éi),t i i
= ) = S0
where u (17’) are arbitrary functions of their arguments and the functions
i(471 N — ki k H
o' (n',. ) satisfy the relations ¢’ =€ (7', n*) uk(n*), i # k. The

last N above equations define 7'(x, t) as implicit functions of x and t;
then the first N equations define r'(x, t) explicitly.
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

Let us recall: if all components of a Haantjes tensor

_;k = N/Iarvjpvkr - Nﬁvplvkr - NrF;<VI-;\/Jr + le;(\/fl fo

vanish,
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

Let us recall: if all components of a Haantjes tensor

_;k = N/I)rvjpvkr - Nﬁvplvkr - NrF;<VI;\/Jr + le;(\/fl fo

vanish, but not all characteristic velocities yk are pairwise distinct, then
corresponding hydrodynamic type system
up = Vi(u)uf

cannot be diagonalised, i.e. cannot be rewritten in the Riemann
invariants

R VAN

re = ‘u (r)rX'
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

Let us recall: if all components of a Haantjes tensor

_;k = N/I)rvjpvkr - Nﬁv/;vkr - NrF;<VI-;\/Jr + le;(\/fl fo

vanish, but not all characteristic velocities yk are pairwise distinct, then
corresponding hydrodynamic type system

up = Vi (u)uy

cannot be diagonalised, i.e. cannot be rewritten in the Riemann
invariants

=)
The Statement: If a hydrodynamic type system is integrable by Tsarev’s

Generalised Hodograph Method, then all components of a Haantjes tensor
vanish.
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

Let us recall: if all components of a Haantjes tensor

i i py\/r Pr/iy\/r P \/iv\/r P \/iv\/r
ik = Np,\/j Vi — Nj,Vka — NrkVij + Njer Vp
vanish, but not all characteristic velocities yk are pairwise distinct, then
corresponding hydrodynamic type system
ul = Vi (u)uk

X

cannot be diagonalised, i.e. cannot be rewritten in the Riemann
invariants

= (0.
The Statement: If a hydrodynamic type system is integrable by Tsarev’s
Generalised Hodograph Method, then all components of a Haantjes tensor
vanish. Then this hydrodynamic type system can be reduced to a

block-diagonal structure by an appropriate invertible point transformation
ok
i*(u).
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

B.A. Dubrovin considered remarkable WDVV associativity equations,
whose solutions determine families (primary flows) of commuting
Hamiltonian Egorov hydrodynamic type systems integrable by Tsarev's
Generalised Hodograph Method.

42 /
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

B.A. Dubrovin considered remarkable WDVV associativity equations,
whose solutions determine families (primary flows) of commuting
Hamiltonian Egorov hydrodynamic type systems integrable by Tsarev's
Generalised Hodograph Method. Most of his attention was concentrated
on diagonalisable hydrodynamic type systems.
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Block-Diagonal Hydrodynamic Type Systems and WDVV

Associativity Equations

B.A. Dubrovin considered remarkable WDVV associativity equations,
whose solutions determine families (primary flows) of commuting
Hamiltonian Egorov hydrodynamic type systems integrable by Tsarev's
Generalised Hodograph Method. Most of his attention was concentrated
on diagonalisable hydrodynamic type systems.

Our Claim is: Dubrovin's Program can be easily extended to a
non-diagonalisable case due to existence of a special coordinate system,
where velocity matrices can be reduced to a block-diagonal form.

For instance, in the three-component case, one has three options: three
distinct characteristic velocities; two distinct characteristic velocities; one
common characteristic velocity. In the four-component case, we have
already five options: four distinct characteristic velocities; one Jordan
block 2x2 and three distinct characteristic velocities; two Jordan blocks
2x2 and two distinct characteristic velocities; one Jordan block 3x3 and
two distinct characteristic velocities; one Jordan block 4x4 and one

On _characie Qn
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