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Degenerate cutoff conditions for the integrable
lattices

Let us explain the phenomenon with the famous Volterra chain

un,t = un(un+1 − un−1), −∞ < n < +∞

We can reduce it to a finite system of the ordinary differential
equations by several ways, preserving integrability.

u0 = 0,

un,t = un(un+1 − un−1), 1 < n < N,

uN+1 = 0,

The obtained system is solved explicitly in terms of the elementary
functions. Another kind of BC u0 = −u1 and uN+1 = −uN . Solutions
to that case is given in terms of the hyperelliptic functions. The
reason: the BC u0 = 0 is compatible with all higher symmetries of the
chain, while the case u0 = −u1 is consistent only with some of the
symmetries (half of the set).



Toda lattice with the BC a0 = an = 0 (consistent with all higher
symmetries)

ak,t = ak(bk − bk+1),

bn,t = 2(a2
k−1 − a2

k), 1 < n < N − 1,

is solved in elementary functions (J. Moser, 1975). We change the
variables

(a1, a2, ...an−1; b1, ...bn)⇒ (λ1, ..., λn; r1, ...rn)

due to

f(λ) =
∑ r2

k

λ− λk
=

1

λ− bn − an−1

λ−bn−1−...− a1
λ−b1

Here Imf(λ) > 0 iff Imλ > 0 and λf(λ)→ 1 for λ→∞. If aj > 0, bj
are real, λi are real and pairwise different, rk are real and

∑
r2
k = 1

then the change is invertible. The new equations look like



The new equations look like

λk,t = 0, rk,t = (λk −
∑

λjr
2
j )rk.

A solution to the system

λk = const, r2
k =

r2
k(0)e2λkt∑
r2
j (0)e2λjt

It remains to find aj and bj due to Euclidean algorithm.
Apparently any integrable lattice of Toda and Volterra type admits
degenerate boundary conditions, consistent with whole class of
symmetries, and therefore has a sequence of the reductions which are
solved in elementary functions. The corresponding classes of reduced
systems are studied in 1980-1990 by Ukrainian school, group leaded
by Yu.M.Berezanskii.



Let’s move on to the class of two-dimensional lattices

un,xy = f(un+1, un, un−1, un,x, un,y) (1)

Definition We call equation (1) integrable if there are functions
f0(u1, u0, u0,x, u0,y) and fN (uN , uN−1, uN,x, uN,y) such that system

u0,x,y = f0(u1, u0, u0,x, u0,y)

un,xy = f(un+1, un, un−1, un,x, un,y), 1 ≤ n ≤ N, (2)

uN,x,y = fN (uN , uN−1, uN,x, uN,y)

obtained from (1) is integrable in the sense of Darboux for any choice
of the integer N .
Motivated by the example

u0,xy = eu1−2u0 ,

un,xy = eun+1−2un+un−1 , 1 ≤ n ≤ N,
uN,xy = e−2uN+uN−1

obtained from the Toda lattice is integrable in the sense of Darboux.



Let us show the list of integrable Toda type lattices given in [A.B.
Shabat, R.I. Yamilov, To a transformation theory of two-dimensional
integrable systems, Phys. Lett. A 227 (1997) 15-23]

1) un,xy = eun+1−2un+un−1 ,

2) un,xy = eun+1 − 2eun + eun−1 ,

3) un,xy = eun+1−un − eun−un−1 ,

4) un,xy = (un+1 − 2un + un−1)un,x,

5) un,xy = (eun+1−un − eun−un−1)un,x,

6) un,xy = αnun,xun,y, αn = 1
un−un−1

− 1
un+1−un =

un+1−2un+un−1

(un+1−un)(un−un−1) ,

One more was found in [M. N. Poptsova, I. T. Habibullin, “Algebraic
properties of quasilinear two-dimensional lattices connected with
integrability”, Ufa Math. J., 10:3 (2018), 86–105]

7) un,xy = αn(un,x−u2
n−1)(un,y−u2

n−1)+2un(un,x+un,y−u2
n−1).



Recall that Darboux integrability means that system (2) possesses
N + 1 nontrivial integrals in both characteristic directions. The
function ū = (u0, . . . , uN0) and its derivatives ūx, ūy, ūxx, ūyy, etc.,
are taken as dynamical variables. By definition, a function
I(ū, ūx, ūxx, . . .) depending on a finite set of dynamical variables is an
x-integral of system (2) if DyI = 0 where Dy is the operator of total
derivative with respect to the variable y. That is to say I is found
from the system

Y I = 0, XiI = 0

where

Xi =
∂

∂ui,y
, Y =

N∑
i=0

(
ui,y

∂

∂ui
+ fi

∂

∂ui,x
+Dx(fi)

∂

∂ui,xx
+ · · ·

)
and fi = f(ui+1, ui, ui−1, ui,x, ui,y) for i = 1, 2, ...N − 1.



Let us consider the Lie algebra Ly generated by the operators Y ,
Xi, i = 0, ...N over the ring K of locally analytic functions of the
dynamical variables ūy, ū, ūx, ūxx, . . . . To the standard operation
[Z,W ] = ZW −WZ we add the following conditions: for any
Z,W ∈ Ly and a, b ∈ K we require

[Z, aW ] = Z(a)W + a[Z,W ],

(aZ)b = aZ(b).

These conditions mean that if Z ∈ Ly and a ∈ K then aZ ∈ Ly. The
algebra Ly defined in this way is called the Lie-Rinehart algebra. We
call it characteristic algebra in y-direction. In a similar way
characteristic algebra Lx is defined.
The algebra Ly is of finite dimension if it admits a finite basis of
operators Z1, Z2, . . . , Zk ∈ Ly such that an arbitrary element Z ∈ Ly
can be represented as their linear combination:
Z = a1Z1 + a2Z2 + · · ·+ akZk; here the coefficients are functions
a1, a2, . . . , ak ∈ K.



The definition can be found in [G. Rinehart, Differential forms for
general commutative algebras, Trans. Amer. Math. Soc. 108 (1963)
195-222.] We thank D Millionshchikov for drawing our attention to
the correct name of this object.
Let us briefly discuss the difference between Lie and Lie-Rinehart
algebras.
Example 3.1. Obviously, the Lie algebra generated by the operators
Z1 = x2 ∂

∂x and Z2 = x3 ∂
∂x is infinite-dimensional. For example, the

commutator [Z1, Z2] = x4 ∂
∂x is not a linear combination of Z1 and Z2

with constant coefficients. At the same time the Lie-Rinehart algebra
corresponding to the ring A of functions analytic in the domain x 6= 0
of the complex plane generated by the same operators is
one-dimensional, since any element Z in the algebra can be
represented as Z = f(x)Z0, where Z0 = ∂

∂x , since here linear
combinations with variable coefficients are allowed.



Our approach is based on the following key statement [A.V. Zhiber,
R.D. Murtazina, I.T. Habibullin, A.B. Shabat, Characteristic Lie
rings and nonlinear integrable equations, M.-Izhevsk: Institute of
Computer Science, (2012) 376 pp.] :

Theorem
System (2) admits a complete set of y-integrals (x-integrals) if and
only if its characteristic algebra Ly (respectively, Lx) is of finite
dimension.

Corollary

System (2) is integrable in the sense of Darboux if both characteristic
algebras Lx and Ly are of finite dimension.



By using the method of characteristic algebras it can be proved
Proposition 1. Integrable equation of the form

un,xy = s(un+1, un, un−1)un,xun,y + β(un+1, un, un−1)un,x+

+ γ(un+1, un, un−1)un,y + δ(un+1, un, un−1),

where at least one of the conditions ∂s(un+1,un,un−1)
∂un±1

6= 0 holds, can be
reduced by a point transformation to one of the following forms:

un,xy = αnun,xun,y,

un,xy = αn(un,x − u2
n − 1)(un,y − u2

n − 1) +

+2un(un,x + un,y − u2
n − 1).

αn =
1

un − un−1
− 1

un+1 − un
=

un+1 − 2un + un−1

(un+1 − un)(un − un−1)
,

[I. Habibullin, M. Poptsova (Kuznetsova), Algebraic properties of
quasilinear two-dimensional lattices connected with integrability, Ufa
Math. J. 10, no. 3 (2018) 86-105.]



un,xy = αnun,xun,y,

un,xy = αn(un,x − u2
n − 1)(un,y − u2

n − 1) +

+2un(un,x + un,y − u2
n − 1).

αn =
1

un − un−1
− 1

un+1 − un
=

un+1 − 2un + un−1

(un+1 − un)(un − un−1)
,

The first equation has been found by E.V.Ferapontov [Theoret. and
Math. Phys. 110 (1997) 68-77.]

and independently by A.B.Shabat and R.I.Yamilov [Phys. Lett. A
227 (1997) 15-23.]

The second was found in [I. Habibullin, M. Poptsova (Kuznetsova),
Ufa Math. J. 10, no. 3 (2018) 86-105.]

The Lax pair for the second one was found in M. N. Kuznetsova,
“Lax Pair for a Novel Two-Dimensional Lattice”, SIGMA, 17 (2021),



In [M.N. Kuznetsova, Classification of a subclass of quasilinear
two-dimensional lattices by means of characteristic algebras, Ufa
Math. J. 11, no. 3 (2019) 109-131.] the following statement is proved.
Proposition 2. Integrable equation of the form

un,xy = g(un+1, un, un−1)un,y + β(un+1, un, un−1)un,x +

+δ(un+1, un, un−1), (3)

where the coefficients satisfy at least one of the four conditions
∂g

∂un±1
6= 0, ∂β

∂un±1
6= 0, can be reduced by a point transformation to

one of the following forms:

un,xy =
(
eun−un−1 − eun+1−un)un,y, (4)

un,xy = (un+1 − 2un + un−1)un,y. (5)

Equations (4) and (5) were found earlier in [A.B. Shabat, R.I.
Yamilov, To a transformation theory of two-dimensional integrable
systems, Phys. Lett. A 227 (1997) 15-23.].



The following sub-case turned out to be very difficult.
Proposition 3. A lattice of the form

un,xy = g(un+1, un, un−1), (6)

which is integrable in the sense of Definition 1, can be reduced by
suitable rescalings to one of the following forms:

un,xy = e2un−mun+1−kun−1 + a(un+1, un) + b(un, un−1), (7)

un,xy = eunun+1un−1 + a(un+1, un) + b(un, un−1), (8)

un,xy = un+1un−1 + a(un+1, un) + b(un, un−1), (9)

un,xy = a(un+1, un) + b(un, un−1); (10)

here m, k are positive integers.
[I.T. Habibullin, M.N. Kuznetsova, A.U. Sakieva, Integrability
conditions for two-dimensional lattices, J. Phys. A: Math. Theor. 53
(2020) 395203 (25pp)]



What we failed to do?
1) General case (is not linear with respect to un,x and/or un,y )

un,xy = f(un+1, un, un−1, un,x, un,y),

Need a new idea.
1) Toda type case

un,xy = g(un+1, un, un−1),

First reason: this case is too labor consuming. Second reason is
related with Yamilov’s plausible reasoning. This equation is
integrable if and only if an equation un,xx = g(un+1, un, un−1) is
integrable. There are only three integrable equations of that form

1) un,xx = eun+1−2un+un−1 ,

2) un,xx = eun+1 − 2eun + eun−1 ,

3) un,xx = eun+1−un − eun−un−1 .



A combined method of classification
In the paper [E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova,
V. S. Novikov, “On a class of 2D integrable lattice equations”,
Journal of Mathematical Physics, 61:7 (2020)] a new approach to the
classification of integrable lattice type equations in 3D was developed
by combining the geometric approach of [E.V. Ferapontov, B.S.
Kruglikov, Dispersionless integrable systems in 3D and Einstein-Weyl
geometry, J. Diff. Geom. 97 (2014) 215-254] with the test based on
the requirement of Darboux integrability of suitably reduced
equations. As an illustration we classify integrable equations of the
form

uxy = f(u, ux, uy,4zu4z̄u,4zz̄u). (11)

Notations: 4z = Tz−1
ε , 4z̄ = 1−Tz̄

ε for the forward/backward discrete

derivatives and 4zz̄ = Tz+Tz̄−2
ε2

for the symmetrised second-order
discrete derivative; here Tz, Tz̄ are the forward/backward ε-shifts in
the variable z.



Equivalent form of the equation

un,xy = g(un, un,x, un,y, (un+1−un)(un−un−1), un+1−2un+un−1),

(12)

Familiar examples of type (11) include the Toda equation

uxy = e4zz̄u (13)

and the equation

uxy = uxuy
4zz̄u

4zu4z̄u
(14)

found by Ferapontov, Shabat and Yamilov. Note that dispersionless
limits of the above equations (obtained as ε→ 0) coincide with the
Boyer-Finley equation uxy = euzz and the equation uxy =

uxuy
u2
z
uzz,

respectively. Both limits belong to the class of dispersionless
integrable PDEs.



The above examples suggest the following 2-step classification
procedure:
(1) First we classify integrable equation of the form

uxy = F (u, ux, uy, uz, uzz), (15)

which can be viewed as dispersionless limits of equations (11) when
ε→ 0. This can be done by requiring that the characteristic
conformal structure [g] of equation (15), namely

[g] = 4Fuzzdxdy − dz2, (16)

is Einstein-Weyl on every solution of (15).
(2) Secondly, replacing uz and uzz in the equations obtained at the
previous step by

√
4zu4z̄u and 4zz̄u, respectively, we obtain

equations of type (11) which, at this stage, are our candidates for
integrability. To these candidate equations we apply the test of
Darboux integrability of reductions obtained by imposing suitable
cut-off conditions.



Genuinely nonlinear case Fuzzuzz 6= 0.

β′(u)uxy + β′′(u)uxuy = γeβ
′(u)uzz+β′′(u)u2

z + δ (17)

and

β′(u)uxy + β′′(u)uxuy = γeβ
′(u)uzz+β′′(u)u2

z+δβ′(u)uz+ 2
9
δ2β(u); (18)

here β(u) is an arbitrary function and γ, δ are constants (without any
loss of generality one can set γ = 1). Note that although β(u) can be
eliminated by a change of variables ũ = β(u), this only works at the
dispersionless level and is not necessarily valid for the corresponding
lattice equations obtained by replacing uz and uzz with

√
4zu4z̄u

and 4zz̄u. Thus, at this stage we will keep β(u) arbitrary.
This case produces the lattice

un,xy = e4zz̄u.



Quasilinear case Fuzzuzz = 0.

Let us set

uxy = ϕ(u, ux, uy, uz)uzz + ψ(u, ux, uy, uz).

Subcase 1: coefficient ϕ depends on u only, ϕu 6= 0. In this case the
Einstein-Weyl conditions lead to the following integrable
dispersionless equation:

uxy = βuzz +
3

2
αβuz +

α2β2

2β′
+

(
β′

β
− β′′

β′

)
uxuy +

ββ′′

β′
u2
z. (19)



Subcase 2: coefficient ϕ depends on u, uz only, ϕuz 6= 0. In this case
we have three integrable dispersionless equations:

uxy = γeβuz
(
uzz +

β′

β
u2
z

)
+
δ

β
− β′

β
uxuy, (20)

uxy = eαβ+β′uz

(
uzz + αuz +

α

2β′
+
β′′

β′
u2
z

)
− β′′

β′
uxuy, (21)

uxy = e
1
2
αβ+β′uz

(
uzz +

1

2
αuz +

α

β′
+
β′′

β′
u2
z

)
− β′′

β′
uxuy. (22)

These cases lead to the lattice

uxy =
uxuy
u

+ u4zz̄u or vn,xy = evn+1 − 2evn + evn−1 , u = ev



Subcase 3: coefficient ϕ depends on u, uz, uy only, ϕuy 6= 0. In this
case we have four integrable dispersionless equations:

uxy = β′uyuzz +

(
1

2
α2β +

3

2
αβ′uz + β′′u2

z

)
uy −

β′′

β′
uxuy, (23)

uxy = (γ + βuy)

(
uzz +

δ

β
+
β′

β
u2
z

)
− β′

β
uxuy, (24)

uxy = γe
1
2
αβ+β′uzuy(α+ 2β′uzz + αβ′uz + 2β′′u2

z)−
β′′

β′
uxuy, (25)

uxy = δeβuz
(
uy +

γ

β

)
(βuzz + β′u2

z)−
β′

β
uxuy. (26)



This case produces the lattice

uxy = ux4zz̄u. (27)

Subcase 4: coefficient ϕ depends on all four arguments u, uz, uy, ux,
we can assume ϕux 6= 0, ϕuy 6= 0. In this case we have the following
equations:

uxy =
2uzz + (4β′ − α)uz + 2ββ′ − αβ

2(uz + β)2
uxuy, (28)

uxy =
uxuy + βux
(uz + γβ)2

uzz +
(4γβ′ − α)uz + 2γ2ββ′ − αγβ

2(uz + γβ)2
uxuy −

−2β′u2
z + αβuz + αγβ2

2(uz + γβ)2
ux, (29)



uxy =
(ux + β)(uy + δβ)

(uz + γβ)2
uzz +

+
(4γβ′ − α)uz + 2γ2ββ′ − αγβ

2(uz + γβ)2
uxuy − (30)

−2β′u2
z + αβuz + αγβ2

2(uz + γβ)2
(uy + δux + δβ),

From these three equations above we find

un,xy = αnun,xun,y,

un,xy = αn(un,x − u2
n − 1)(un,y − u2

n − 1) +

+2un(un,x + un,y − u2
n − 1).

αn =
1

un − un−1
− 1

un+1 − un
=

un+1 − 2un + un−1

(un+1 − un)(un − un−1)
,



We also have the following three equations involving hyperbolic
functions:

uxy = β′
β′uzz + 1

2αβ
′uz + β′′u2

z

sinh2(γ + 1
2αβ + β′uz)

uxuy −
β′′

β′
uxuy, (31)

uxy =
βuzz + β′u2

z

sinh2(δ + βuz)
ux(γ + βuy)−

β′

β
uxuy, (32)

uxy =
(µ+ βux)(ν + βuy)

sinh2(δ + βuz)
uzz + (33)

+
β′

β

µν + β(µuy + νux + βuxuy)

sinh2(δ + βuz)
u2
z −

β′

β
uxuy.

They do not produce integrable lattices.



Comments to the second classification algorithm:
1) All found equations are quasilinear (linear on un,x, un,x)
2) All equations known before are in the list, except those that are
not represented in the form

un,xy = g(un, un,x, un,y, (un+1−un)(un−un−1), un+1−2un+un−1),

3) un,xy = eun+1−un − eun−un−1 ,

5) un,xy = (eun+1−un − eun−un−1)un,x,



Integrable equations of the form

ujn+1,x = F (ujn,x, u
j+1
n , ujn+1, u

j
n, u

j−1
n+1), −∞ < n, j <∞, (34)

have been studied by many authors (see Ferapontov, E.V., V.S.
Novikov, and I. Roustemoglou. “On the classification of discrete
Hirota-type equations in 3D.” Int. Math. Res. Not. IMRN 2015 and
the references therein).



Conjecture
A lattice of the form

ujn+1,x = F (ujn,x, u
j+1
n , ujn+1, u

j
n, u

j−1
n+1), −∞ < n, j <∞, (35)

is integrable if and only if there exists a pair of functions H(1) and
H(2) such that for any choice of the integer N , a system of the
hyperbolic type differential-difference equations

u1
n+1,x = H(1)(u1

n,x, u
2
n, u

1
n+1, u

1
n),

ujn+1,x = F j(ujn,x, u
j+1
n , ujn+1, u

j
n, u

j−1
n+1), 1 < j < N, (36)

uNn+1,x = H(2)(uNn,x, u
N
n+1, u

N
n , u

N−1
n+1 ), −∞ < n <∞

obtained from (35) is integrable in the sense of Darboux. We have
checked for N ≤ 3 that known integrable lattices pass this test.

I. T. Habibullin and A. R. Khakimova, Journal of Physics A:
Mathematical and Theoretical, 54:29 (2021), 295202 , 34 pp.


