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Introduction

The inverse problem of enumerative combinatorics is formulated as search of
objects with prescribed statistics. Let us look at integrable equations from
this particular point of view. For instance, what is the combinatorics behind
the KdV mysterious coefficients? Is it possible to figure out a definition of
corresponding combinatorial objects?

ut1 = u1

ut3 = u3 + 6uu1

ut5 = u5 + (10uu3 + 20u1u2) + 30u2u1

ut7 = u7 + (14uu5 + 42u1u4 + 70u2u3)

+ (70u2u3 + 280uu1u2 + 70u3
1) + 140u3u1

ut9 = u9 + (18uu7 + 72u1u6 + 168u2u5 + 252u3u4)

+ (126u2u5 + 756uu1u4 + 1260uu2u3 + 966u2
1u3 + 1302u1u

2
2)

+ (420u3u3 + 2520u2u1u2 + 1260uu3
1) + 630u4u1

Korteweg–de Vries hierarchy, w(uj) = j + 2



Contents of the talk

Hierarchy Combinatorial objects, their numbers
potential Burgers = Set partitions, Bell polynomials Yn, Stirling

numbers of the 2nd kind, Bell numbers
Burgers = Set partitions without distinguished singleton
Ibragimov–Shabat ≈ B-type partitions, B-analogs of Stirling

numbers of the 2nd kind, Dowling numbers
KdV ≈ Non-overlapping partitions, Bessel numbers

k
N

new results

Both left and right parts of the table are very well studied, but their relation
deserves better understanding.

The combinatorial interpretation of equations was pointed out only in the
simplest case of the pot-Burgers hierarchy, see e.g. Lambert et al (1994). The
combinatorics related with solutions is better studied (τ -functions expansions
and Hurwitz numbers, solitons and Bernoulli numbers, self-similar solutions
and asymptotic of longest increasing subsequence of a random permutation,
and more), but this is beyond our talk.

http://dx.doi.org/10.1088/0305-4470/27/15/028


What is computed?

— For the pot-Burgers and Burgers hierarchies, we consider generating function
intermediately for the higher flows.

— For the KdV, we compute the formal expansion of the log-derivative of ψ-
function by solving the Riccati equation (inversion of the Miura map, see e.g.
Gelfand & Dikii 1975). The KdV flows are related with this series by simple
algebraic equations.

— In the IS case a natural choice of generating function is dictated by the
linearization procedure.

How to compute?

For our purpose, it is enough to use recurrent relations.

We are not interested in “explicit” expressions for the coefficients here. However,
it should be mentioned that such formulae for the pot-KdV flows actually do
exist. One of them, obtained already by GD (1975) represents the coefficient of
a given monomial as a certain multiple integral. Another expression (Schimming
1995) is “more combinatorial”, but it remains very complicated. Only the pot-
Burgers coefficients are given explicitly, indeed.

http://mi.mathnet.ru/umn4238
http://mi.mathnet.ru/umn4238
http://dx.doi.org/10.1007/978-94-011-0017-5_28


Potential Burgers hierarchy

It appears from the linear heat equation hierarchy

ψtn = ψn, n = 0, 1, 2, . . .

after the change of dependent variable ψ = ev:

vtn = e−vDn(ev) = (D + v1)n(1) = Yn(v1, . . . , vn). (1)

A meaningful combinatorics appears just from nothing!

vt0 = 1

vt1 = v1

vt2 = v2 + v2
1

vt3 = v3 + 3v1v2 + v3
1

vt4 = v4 + (4v1v3 + 3v2
2) + 6v2

1v2 + v4
1

vt5 = v5 + (5v1v4 + 10v2v3) + (10v2
1v3 + 15v1v

2
2) + 10v3

1v2 + v5
1

The pot-Burgers hierarchy, w(vj) = j



Polynomials Yn play a fundamental role in many sciences and are known under
the name of (full exponential) Bell polynomials, see e.g. Comtet (1974). An
equivalent definition through the exponential generating functions reads

∞∑
n=0

Yn
zn

n!
= e−v

∞∑
n=0

Dn(ev)
zn

n!
= ev(x+z)−v(x) = exp

( ∞∑
n=1

vn
zn

n!

)
,

and this immediately implies the explicit formula

Yn =
∑

k1+2k2+···+rkr=n

n!

(1!)k1 . . . (r!)krk1! . . . kr!
vk11 . . . vkrr . (2)

Its combinatorial interpretation is obvious:

— monomials correspond to partitions of the number n;

— coefficients of monomials count partitions of the set [n] = {1, . . . , n}
into the subsets (or blocks) of prescribed size. Recall, that a set partition
is considered as unordered set (with blocks as the elements), that is, ordering
of the blocks does not matter.



Theorem 1. In the pot-Burgers hierarchy, the coefficient of vk11 . . . vkrr is
equal to the number of partitions with n = k1 + 2k2 + · · · + rkr elements
into k1 blocks with 1 element, . . . , kr blocks with r elements.

n = 2 : v2 v2
1

2 1 + 1

12 1|2

n = 3 : v3 3v1v2 v3
1

3 1 + 2 1 + 1 + 1

123 1|23 1|2|3
2|13
3|12

n = 4 : v4 4v1v3 3v2
2 6v2

1v2 v4
1

4 1 + 3 2 + 2 1 + 1 + 2 1 + 1 + 1 + 1

1234 1|234 12|34 1|2|34 1|2|3|4
2|134 13|24 1|3|24
3|124 14|23 1|4|23
4|123 2|3|14

2|4|13
3|4|12



A less detailed statistics is obtained if we forget about sizes of blocks and
consider just their number in a given partition. Obviously, this correspond to
summing up the coefficients of terms of the same degree, which gives us the
Bell polynomials of one variable

Bn(u) = Yn(u, . . . , u) = (u∂u + u)n(1) =

n∑
k=0

{
n

k

}
uk.

The coefficient
{
n
k

}
of uk is the number of partitions of [n] into k blocks. It

is called the Stirling number of the second kind (OEIS:A048993):

1 1
0 1 1
0 1 1 2
0 1 3 1 5
0 1 7 6 1 15
0 1 15 25 10 1 52
0 1 31 90 65 15 1 203

The sums over the rows, the Bell numbers Bn = Bn(1) = Yn(1, . . . , 1) give
the total number of partitions (OEIS:A000110).

http://oeis.org/A048993
http://oeis.org/A000110


Proof of Theorem 1.

One proof follows intermediately from the explicit formula (2) for the coefficients.
However, we will not always have such a formula at hand. The following
reasoning is more conceptual.

Let Πn,k denote the set of all partitions of the set [n] into k blocks and Πn

denote the set of all partitions of [n]. Consider the operations

dj : Πn,k → Πn+1,k, j = 1, . . . , k, M : Πn,k → Πn+1,k+1,

defined, respectively, as appending of the element n+ 1 to j-th block (we will
define the enumeration of the blocks by ordering of their minimal elements)
or as a new singleton:

td td tdtd tdtd td tdtd td td td
�




�

	dd
dd
dd

1 2 n
1

2

k

d1

d2

dk

M



Starting from the partition {∅} of the set [0] = ∅ and applying operations
dj ,M , one can generate any partition of [n], in a unique way. Indeed, the
required sequence of operations is uniquely recovered by deleting elements in
the inverse order from n to 1.

Recall that in the theorem, a set partition π with k1 1-blocks, . . . , kr r-blocks
corresponds to the monomial p(π) = vk11 . . . vkrr .

The differentiation D(p(π)) by the Leibnitz rule amounts to replacing of vi
with vi+1 for each factor in turn, taking the multiplicity into account. In the
partition language, this means that we add the new element to each block in
turn. As the result, we obtain the sum of monomials p(dj(π)) for all admissible
values of j.

Multiplication of p(π) by v1 gives the monomial p(M(π)).

Thus, the polynomials
Pn =

∑
π∈Πn

p(π)

are related by recurrent relation Pn+1 = (D + v1)(Pn) and since P1 = v1,
hence Pn = Yn(v1, . . . , vn). �



Burgers hierarchy

The right hand sides of equations (1) do not contain v and this makes the
substitution u = v1 possible. This brings to the Burgers hierarchy

utn = D(Yn(u, . . . , un−1)), n = 1, 2, . . . .

What is the combinatorial interpretation in this case?

ut1 = u1

ut2 = u2 + 2uu1

ut3 = u3 + (3uu2 + 3u2
1) + 3u2u1

ut4 = u4 + (4uu3 + 10u1u2) + (6u2u2 + 12uu2
1) + 4u3u1

ut5 = u5 + (5uu4 + 15u1u3 + 10u2
2) + (10u2u3 + 50uu1u2 + 15u3

1)

+ (10u3u2 + 30u2u2
1) + 5u4u1

Burgers hierarchy, w(uj) = j + 1



This can be easily understood by the following example, for n = 3:

v3 3v1v2 v3
1

u2 3uu1 u3

123 1|23 1|2|3
2|13
3|12

D−→
u3 3uu2 + 3u2

1 3u2u1

1234 1|234 14|23 1|2|34
2|134 24|13 1|24|3
3|124 34|12 14|2|3

↗
u3 3uu2 3u2

1 3u2u1 u4

1234 1|234 12|34 1|2|34 1|2|3|4
2|134 13|24 1|3|24
3|124 14|23 1|4|23
4|123 2|3|14

2|4|13
3|4|12



Certainly, renaming vj → uj−1 does not change the combinatorics.

The differentiation amounts to appending the new element to all blocks
in turn, however, now we do not add it as a new block. Therefore, the
partitions under consideration are constructed as before, but we do not apply
the operation M at the last step.

As a result, all partitions Πn are mapped onto those partitions from Πn+1

where the element n+ 1 does not appear as a singleton.

Theorem 2. In the Burgers hierarchy, the coefficient of uk0uk11 . . . ukrr is
equal to the number of partitions of the set with one distinguished element
into k0 blocks with 1 element, . . . , kr blocks with (r+ 1) element and such
that the distinguished element does not constitute 1-block.

As before, one can consider more rough statistics. For instance, setting u = 1
gives us the total number of partitions under consideration of the set [n+ 1]:

D(Yn(u, . . . , un−1))|uj=1 = B′n(1) =

n∑
k=1

k

{
n

k

}
, n ≥ 1.



This integer sequence (2-Bell numbers) starts

1, 3, 10, 37, 151, 674, 3263, 17007, 94828, 562595, . . .

According to (OEIS:A005493), it can be characterized also in many other ways,
in particular, as the number of partitions of [n] with distinguished block or as
the total number of blocks in all set partitions of [n]. These interpretations
are obvious as well, since the distinguished blocks can be identified with the
blocks enlarged by the operations dj , and these operations are applied exactly
as many times as there are blocks in all partitions.

http://oeis.org/A005493


Ibragimov–Shabat hierarchy

Recurrent relations

Let us recall the sequence of point changes and substitutions between equation
ψt3 = ψ3 and the Ibragimov–Shabat equation (1980)

ut3 = u3 + 3u2u2 + 9uu2
1 + 3u4u1.

ψt3 = ψ3 ut3 = u3 + 3u2u2 + 9uu2
1 + 3u4u1

l ψ2 = s l u2 = v

st3 = D

(
s2 −

3s2
1

4s

)
vt3 = D

(
v2 −

3v2
1

4v
+ 3vv1 + v3

)
↑ s = q1 ↑ v = w1

qt3 = q3 −
3q2

2

4q1

q=e2w

←−−→ wt3 = w3 −
3w2

2

4w1
+ 3w1w2 + w3

1

Linearization of the IS equation

http://dx.doi.org/10.1007/BF01078315


This transformation spoils the even flows ψt2m = ψ2m. Indeed, the change
ψ2 = s brings to equation stn = · · · ∈ ImD only for odd n:

stn = 2ψψn = D(2ψψn−1 − 2ψ1ψn−2 + 2ψ2ψn−3 + · · · ± ψ2
(n−1)/2). (3)

In the analogous equation for even n, the term ψ2
n/2 remains outside the

parentheses, that is stn 6∈ ImD, and the further substitution s = q1 leads out
of the class of evolutionary equations.

Statement. The IS hierarchy is equivalent to equations

Dt(u) =
1

2u
D(AĀ) =

1

2z
(A− Ā)− uAĀ, (4)

z(D + u2)(A) = A− u (5)

where A = A(z), Ā = A(−z),

Dt = ∂t1 + z2∂t3 + z4∂t5 + . . . , A = a0 + a1z + a2z
2 + . . .



Proof. Let us consider the generating function

Ψ = ψ + ψ1z + ψ2z
2 + . . .

and set Ψ =
√

2ewA. Equation (5) follows from

zD(Ψ) = Ψ− ψ, ψ =
√
q1 =

√
2e2ww1 =

√
2ewu.

Next, let Ψ̄ = Ψ(−z), then (cf (3))

D(ΨΨ̄) = z−1(Ψ− ψ)Ψ̄− z−1Ψ(Ψ̄− ψ)

= z−1ψ(Ψ− Ψ̄) = 2ψ(ψ1 + ψ3z
2 + . . . ) = 2ψDt(ψ) = Dt(s).

Applying D−1 yields ΨΨ̄ = Dt(q) = 2e2wDt(w), wherefrom

2uDt(u) = Dt(v) = DDt(w) =
1

2
D(e−2wΨΨ̄) = D(AĀ).

Second equality in (4) follows after elimination of derivatives by use of (5). �



Equation (5) is equivalent to recurrent relations

a0 = u, an = an(u, . . . , un) = (D + u2)(an−1), n = 1, 2, . . . (6)

which are our object of study. Let us try to find a combinatorial interpretation
for this recursion.

a0 = u

a1 = u1 + u3

a2 = u2 + 4u2u1 + u5

a3 = u3 + (5u2u2 + 8uu2
1) + 9u4u1 + u7

a4 = u4 + (6u2u3 + 26uu1u2 + 8u3
1) + (14u4u2 + 44u3u2

1) + 16u6u1 + u9

a5 = u5 + (7u2u4 + 38uu1u3 + 26uu2
2 + 50u2

1u2)

+ (20u4u3 + 170u3u1u2 + 140u2u3
1)

+ (30u6u2 + 140u5u2
1) + 25u8u1 + u11

Polynomials an, w(uj) = 2j + 1



Experiment

In contrast to the Burgers hierarchy case, here we do not know an explicit
formula for an, but this is not too important, the main problem is to guess
what are the objects which we are counting.

Let us pass to a less detailed statistics by gluing together terms of the same
degree. Polynomials an(u, . . . , u) = (u∂u + u2)n(u) contain only odd powers
and their coefficients constitute the triangle of B-analogs of Stirling numbers
of the second kind (OEIS:A039755)

1 1
1 1 2
1 4 1 6
1 13 9 1 24
1 40 58 16 1 116
1 121 330 170 25 1 648
1 364 1771 1520 395 36 1 4088

The sums in rows, that is the total sums of coefficients an(1, . . . , 1) give rise
to the sequence (OEIS:A007405) of B-analogs of the Bell numbers, or the
Dowling numbers. Great! But what is it?

http://oeis.org/A039755
http://oeis.org/A007405


B type partitions (signed set partitions, Z2-partitions)

Additional structures on the set bring to special classes of set partitions. B
type partitions (Dowling 1973) make use of the reflection j → −j.

A partition π of the set {−n, . . . , n} is called the Bn type partition if:
1) π = −π, that is for each block β ∈ π also −β ∈ π;
2) π contains only one block π0 ∈ π such that π0 = −π0.

We will denote ΠB
n the set of all such partitions and ΠB

n,k those partitions
which contain k block pairs.

In a brief notation, the negative elements of the 0-block are omitted, and
only that block of each pair is displayed for which the element with minimal
absolute value is positive; the minus signs are denoted by over bars:

td td
tdtd

td td
tdtdtd td td →

tdtdtd tdtd td
−5,−4|−3, 0, 3|−2, 1|−1, 2|4, 5 → 03|12̄|45

http://dx.doi.org/10.1016/S0095-8956(73)80007-3


Generating operations

For a block β, let |β| denote the number of positive elements in it:

|β| = #{i ∈ β : i > 0}.

It is clear that the number of negative elements in the block is |β̄|.
Let a partition π ∈ ΠB

n,k consists of 0-block π0 and block pairs π1, π̄1, . . . ,
πk, π̄k, such that the element of πj with minimal absolute value is positive.
For such a partition, let

p(π) = u|π0| · u|π1|−1u|π̄1| · · ·u|πk|−1u|π̄k|.

Theorem 3. The polynomials (6) are equal to

an =
∑
π∈ΠB

n

p(π).

Thus, an are the Z2-analogs of the full exponential Bell polynomials Yn.



Example: n = 3 u3 5u2u2 8uu2
1 9u4u1 u7

0123 0|123 0|123̄ 0|12|3 1|2|3|4
0|12̄3̄ 0|12̄3 0|12̄|3
012|3 01|23 0|13|2
013|2 01|23̄ 0|13̄|2
023|1 02|13 0|23|1

02|13̄ 0|23̄|1
03|12 01|2|3
03|12̄ 02|1|3

03|1|2

Proof. Let us denote the sum in the right hand side pn. Obviously, p0 = u =
a0, so we only have to prove that pn satisfy the same recurrent relations as
an, that is, pn = (D + u2)(pn−1).

Notice, that deleting of elements ±n from any Bn partition gives us a Bn−1

type partition. Therefore, ΠB
n is constructed from ΠB

n−1 by adding ±n in all
possible ways which are described by the following operations:



d0 : ΠB
n−1,k → ΠB

n,k, insertion of both elements ±n into 0-block;

dj : ΠB
n−1,k → ΠB

n,k, j = 1, . . . , k, insertion of ±n into blocks ±πj ;

d̄j : ΠB
n−1,k → ΠB

n,k, j = 1, . . . , k, insertion of ±n into blocks ∓πj ;

M : ΠB
n−1,k → ΠB

n,k+1, adding of the new block pair {−n}, {n}.

Starting from the trivial partition of the set {0}, these operations generate
all B type set partitions, in a unique way. Let us keep track of the monomial
p(π), π ∈ ΠB

n−1,k, under these operations:

d0: the factor u|π0| is replaced with u|π0|+1;

dj : the factor u|πj |−1 is replaced with u|πj |;

d̄j : the factor u|π̄j | is replaced with u|π̄j |+1;

M : two new factors u are added.

Therefore, application of all possible operations maps the monomial p(π) to
the sum of monomials (D + u2)(p(π)). �



Korteweg–de Vries hierarchy

Recurrent relations

A most effective computation method for the KdV flows is as follows (see
proof e.g. in GD 1975). The Riccati equation

D(f) + f2 = λ− u, λ = z2/4 (7)

defines the generating function

f(z) = −z
2

+
f1(u)

z
+
f2(u, u1)

z2
+ · · ·+ fn(u, . . . , un−1)

zn
+ · · · .

Let

g(z) =
1

2(f(z)− f(−z))
= − 1

2z
− g1

z3
− g3

z5
− · · · − g2m−1

z2m+1
− · · ·

then the KdV hierarchy is

ut2m+1
= D(g2m+1) = u2m+1 + . . . , m = 0, 1, 2, . . . .

http://mi.mathnet.ru/umn4238


Equation (7) amounts to the recurrent relations

f1 = u, fn+1 = D(fn) +

n−1∑
s=1

fsfn−s, n = 1, 2, . . . (8)

which are the main object for us. The equation for g(z) is equivalent to

g1 = u, g2m+1 = f2m+1 + 2

m∑
s=1

g2s−1f2m−2s+1, m = 1, 2, . . .

f1 = u

f2 = u1

f3 = u2 + u2

f4 = u3 + 4uu1

f5 = u4 + (6uu2 + 5u2
1) + 2u3

f6 = u5 + (8uu3 + 18u1u2) + 16u2u1

f7 = u6 + (10uu4 + 28u1u3 + 19u2
2) + (30u2u2 + 50uu2

1) + 5u4

Polynomials fn, w(uj) = j + 2



First interpretation: unexpanded monomials

Let us consider expressions ϕ builded from the variable u and operations
M(a, b), dj(a), 1 ≤ j ≤ deg a where deg a = number of instances of u in a.

The value of expression expand(ϕ) is computed as follows:
— independently on the order of operations, all dj are applied before M ;
— dj(a) acts by replacing of j-th instance of ui in a with ui+1 (u is identified
with u0, as usual);
— M(a, b) is replaced by the product ab.

Let Φn denote the set of all expressions with the total number of symbols
u, d,M equal to n. For instance:

unexpanded monomials expanded monomials
n = 1 u u
n = 2 d1(u) u1

n = 3 d1(d1(u)), M(u, u) u2, u2

n = 4 d1(d1(d1(u))), u3,
d1(M(u, u)), d2(M(u, u)) uu1, uu1

M(d1(u), u), M(u, d1(u)) uu1, uu1



Theorem 4. The number of different expressions builded from symbols
M,dj , u with the same monomial as their value is equal to the coefficient
of this monomial in polynomials fn. In other words,

fn =
∑
ϕ∈Φn

expand(ϕ). (9)

Proof. We make use of the properties

deg a∑
j=1

expand(dj(a)) = D(expand(a)),

expand(M(a, b)) = expand(a) expand(b).

Any expression from Φn+1, n > 0 is either of the form dj(a) where a ∈ Φn,
1 ≤ j ≤ deg a or of the from M(a, b) where a ∈ Φs, b ∈ Φn−s. This implies
that polynomials (9) satisfy the recurrent relation (8). �

This interpretation is fairly intuitive, but it is desirable to compare it with
something more standard.



Experiment

As usual, let us identify the terms of the same power in fn. This yields an
integer triangle which, apparently, is not in the OEIS. However, the coefficients
sum totals turn out to be known: fn+1[1] is equal to the number of non-
overlapping partitions of the set [n], or the Bessel number B∗n (OEIS:A006789)

1 1
1 1
1 1 2
1 4 5
1 11 2 14
1 26 16 43
1 57 80 5 143
1 120 324 64 509
1 247 1170 490 14 1922
1 502 3948 2944 256 7651
1 1013 12776 15403 2730 42 31965

(10)

Notice, that equation u∂u(f) + f2 = λ − u is equivalent to the Bessel
equation, indeed. Moreover, one can see in the triangle the Euler numbers
(OEIS:A000295), the Catalan numbers (OEIS:A000108) and powers of 4.

http://oeis.org/A006789
http://oeis.org/A000295
http://oeis.org/A000108


Second interpretation: non-overlapping partitions

This class of set partitions (Flajolet, Schott 1990) engages the order relation
on the partitioned set [n] = {1, . . . , n}.

Blocks α and β of a set partition π overlap if

minα < minβ < maxα < maxβ.

The partition is non-overlapping (NOP) if any two blocks in it do not overlap.
All NOPs of the set [n] will be denoted Π∗n.

td td td tdtd td td
overlapping blocks

td td tdtd td td td td
non-overlapping blocks

The interval [minα,maxα] is called the support of the block α. The definition
of NOP is equivalent to the property that supports of any two blocks either
do not intersect or lie one in another.

http://dx.doi.org/10.1016/S0195-6698(13)80025-X


Remark. A more restrictive condition of non-crossing forbids α1 < β1 < α2 <
β2. NCPs are more popular that NOPs, but their relation with integrable
equations is an open question at the moment.

Some simple properties of NOPs:

— At n < 4, we have Π∗n = Πn; in Π4, only one partition 13|24 overlaps.

— Singletons do not overlap with any block.

— NOPs with doublets only are identified with the balanced sets of parentheses:

td tdtd td td td
td td

→ ( ( ) ( ) ) ( )

This explains the Catalan numbers in the above number triangle. The recursion
for the ‘dispersionless terms’ appears if we erase the differentiation:

f1 = u, fn+1 = D(fn) +

n−1∑
s=1

fsfn−s → u, 0, u2, 0, 2u3, 0, 5u4, 0, . . .

But, how to establish a correspondence with generic NOPs?



Generating operations

Let us identify u with the partition {∅} and define the action of M and
dj on partitions, in such a way that expressions Φn+1 be in a one-to-one
correspondence with Π∗n.

Degree. Let deg π = k if π contains k − 1 multiplets.

Operation M . Let ρ ∈ Π∗r , σ ∈ Π∗s. Denote by (σ)r+1 the partition of the set
{r+2, r+s+1} obtained from σ by adding r+1 to each element, and define

M(ρ, σ) = ρ ∪ {{r + 1, r + s+ 2}} ∪ (σ)r+1 ∈ Π∗r+s+2.

td td td × td td tdtd = td td td
td tdtd td tdtd

In particular, if ρ = {∅} then (σ)1 is bounded by the doublet {1, s+ 2}, and
if σ = {∅} then the doublet {r + 1, r + 2} is appended to ρ.

Notice that degM(ρ, σ) = deg ρdeg σ.



Operation dj . Adding of the element n+ 1 to π ∈ Π∗n.

If j = 1 then the element is added as a singleton.

If 1 < j ≤ k = deg π then let us denote µ2, . . . , µk all multiplets in π, ordered
by increase of their minimal elements. Assume that all blocks with support
containing µj are enumerated by a sequence j1 < · · · < js = j. Operation dj
rotates parts of these blocks as shown on the diagram while all the rest blocks
do not change.

td td td td tdtd td td tdtd td td tdm n+ 1

j1

j2

j = js

↑
↑ y

dj
y

td td td td tdtd td td tdtd td td td



More formal: divide µjr into left and right parts with respect to m = maxµj

µ−jr = {i ∈ µjr : i < m}, µ+
jr

= {i ∈ µjr : i ≥ m}

and form the new blocks

µ̃j1 = µ−j1 ∪ {m,n+ 1}, µ̃jr = µ−jr ∪ µ
+
jr−1

, r = 2, . . . , s.

Theorem 5. Operations M , dj generate any NOP, in a unique way.

Proof. Given a partition, the sequence of operations which brings to it is
recovered by consideration of the block β containing the maximal element of
the partition. If β is a singleton then the last operation was d1; if a doublet
then it was M ; if a multiplet then it was dj where j is the maximal number
such that the support of multiplet µj contains the last to the end element
of β. In each case, applying of inverse operation brings to NOPs with lesser
numbers of elements. �



The established bijection allows to associate a certain monomial with each
NOP, although not in a quite effective way, because we first have to build
an exression ϕ ∈ Φn corresponding to π ∈ Π∗n−1 and then to compute
expand(ϕ):

Φn ↔ Π∗n−1

expand ↓ ↙
fn

Nevertheless, it is easy to trace at the degree of monomial which is one more
than the number of multiplets in the partition:

Corollary. The number of NOPs of n elements containing k multiplets is
equal to the number in the n-th row and k-th column of the number triangle
(10), starting their enumeration from 0.



Conclusion

• Too few examples to make far-reaching conclusions at the moment.

• A conjecture is that any polynomial (?) integrable hierarchy corresponds
to some type of combinatorial objects, possibly unknown. Then, what is
the combinatorics related to the mKdV, 5-th order KdV-likes, nonlinear
Schrödinger equation and so on?

• In contrast, the objects in the combinatorics are so plentiful and diverse
that it seems doubtful that any one can be associated with an integrable
hierarchy. This property should be very special.

• It is important to understand what is integrability intermediately in
combinatorial terms (rather than of the level of generating functions).
For instance, is it possible to get a proof of the commutativity of the
flows based on their combinatorial interpretation?



My procedure was this: I would count the stones by eye
and write down the figure. Then I would divide them into
two handfuls that I would scatter separately on the table.
I would count the two totals, note them down, and repeat
the operation.

Borges, Blue tigers (translated by Andrew Hurley)


