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CLASSIFICATION OF INTEGRABLE
EVOLUTION EQUATIONS

V. V.SOKOLOV AND A. B. SHABAT

Ufa State University
Ufa, J.S.5.R.

Abstract

This survey considers the problems of classification of both differential and difference
evolution equations. We point out a class of equations containing an arbitrary function
of two arguments, that are analogous to the Burgers equation. A complete list is given
of equations of the form u, = u, . + f(u,u,, u, ), analogous to the Korteweg—deVries
equation. New examples are found of equations analogous to the difference variant of
the Korteweg—deVries equation. The classification is based on the conditions for
nontriviality of the Lie-Backlund algebra. We also consider modifications of these
conditions, related to the conservation laws and Backiund transformations.
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Introduction

In our survey we present results of papers [1-8]. In these papers new
examples were found and principles for the classification of integrable
nonlinear equations were pointed out.

In §§1, 2 we consider scalar evolution equations

u = F(u,u, ..., u,), m>2 (0.1)

221



222 V. V. SOKOLOV AND A. B. SHABAT

def . ; . s .
where u, = 0'u/0x'. The classification of Eqs. (0.1) i1s based on an
investigation of the solvability of the operator relation

L—[F.,L]=0 (0.2)

. def def
Here Fy,= S (3F/du)D’, D=3/dx, L,=[3/31,L]. We require
that there exists a series

L= > DL fi=f(wuy, o w,) (0.3)
satisfying condition (0.2) on solutions of Eq. (0.1). For example, for
the Burgers equation

U, = u, + uu, (0.4)
the relation (0.2) is satisfied by L = D +du + 1w, D =" In fact, in this
case the left side of (0.2) has the form

] 1 3 -
E(u[—uf—uul)-!-z K(u,—uz—uul)D :

and therefore vanishes on solutions of (0.4).
Along with (0.2) we consider the equation

S, 4+ FyS+ SF,=0 (0.5)
where Fj is the differential operator formally adjoint to F,. This
equation is closely related to Eq. (0.2). Namely, if S|, S, are solutions
of (0.5), then L = §,7'S, is a solution of (0.2). For example, for the
Korteweg-deVries equation

u, = u, + uu, (0.6)
the solutions of (0.5) are (cf. [9])
S,=(D*+2uD+4u) ', S,=D""

and so L= D?+2u+ tu,D 7' satisfies relation (0.2). The choice of
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equation (0.2) as fundamental is explained by the fact that, unlike the
set of solutions of Eq. (0.5), the set ff(F) of solutions of (0.2) is closed
under multiplication and extraction of roots of degree r from solu-
tions of the form (0.3).

Let us enumerate the basic results of §1. Theorem 1.7 asserts that if
the Eq. (0.1) has an infinite Lie-Bicklund algebra, then Eq. (0.2) is
solvable. Theorem 1.12 guarantees the solvability of (0.2) and (0.5) for
the case when Eq. (0.1) has an infinite series of local conservation
laws. Theorem 1.9 shows that if Eq. (0.2) is solvable, the first order
operator L in ff(F) generates a series of conservation laws for Eq.
(0.1):

%(resL‘l) eImD, res(L"L,) eImD,
(0.7)
resL¥yeImD,  kEN

where res(EaI-Df)d;fa_]. It turns out that several of the first few
conservation laws (0.7) can be written in terms of F. For example, the
first conservation law has the form 3/3¢(3F/du,)” /™ € Im D, the
second is expressed in the form 9/3:((0F/du,,_,)/(0F/3u,)) €
Im D, etc. The existence for Eq. (0.1) of the conservation laws (0.7)
imposes strict conditions on the function F.

Some of the conservation laws (0.7) may turn out to be trivial. For
example, in the case of the Burgers equation

L=D+tu+iuD™"=D(D+Liu)D™!
and thus
res L¥ = resD(D + %u)kD = %D[(D + %u)k_'(u)} elmD

In Sec. 1.4 we show that the conditions

oF /a_F e€ImD + C, resL*€ImD + C, keN
Ju aum

m—1

(0.8)
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which indicate triviality of the corresponding conservation laws of the
series (0.7), are satisfied for Eq. (0.1), being reduced by the differen-
tial substitution v = (u, ..., u,) to linear equations with constant
coefficients.

When only some of the first of the conditions (0.8) are violated, one

. - . [O2 .
can introduce auxiliary variables u, i=0,1,2,..., satisfying the
relations

0 i .
pW=3F J3F  pO_resri i=12,. ..
du,,_, / du,

and seek a substitution reducing Eq. (0.1) to a linear equation of the
form

For example, for Eq. (0.4), the first of the conditions (0.8) is violated,

since (0F/0u,)/(3F/du,) = u. Introducing the auxiliary variable (2)
-~

= D ~'u, it is not difficult to find the substitution v = (p((u)) reducing

the Burgers equation to the heat conduction equation.

If the series (0.7) contains an infinite number of nontrivial conser-
vation laws, then there is apparently no chance of finding a substitu-
tion connecting Eq. (0.1) with a linear equation. In this case one can
try to apply the inverse scattering technique to Eq. (0.1), or look for a
substitution that reduces it to an equation that is integrable by the
inverse scattering method.

In §2 we consider the problem of enumerating those equation (0.1)
of order m = 2,3 that satisfy conditions (0.7). More precisely, by
expressing the first coefficients of the operator L = aD + B +
yD ™'+ ... in terms of the function F, we study an overdetermined
system of partial differential equations, equivalent to several of the
first conditions in (0.7).

For m =2 we give a complete list of equations satisfying the first
three conditions of (0.7). For all the equations in this list the fourth
condition is satisfied identically. The list contains equations whose
right sides depend on functional parameters. For certain of these
equations the question of the solvability of Eq. (0.2) remains open at
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present. We give two examples for which one has succeeded in
finding a solution of (0.2). The first equation

u, = u u, + a(u) + b(u)u

contains arbitrary functions ¢ and b of one variable. The solution of
(0.2) is the differential operator

L=u’D?— ul_3(3u2 + aulz)D + u,‘4(3u§ + auyut — Uslhy).
The second equation

u=——"> +c(u,uy),

fiuy + fofiuy

where f, = 9f/0u, f, = 9f/du,, contains an arbitrary function f of two
variables. The function ¢ is found from the relation

fl

(fo ' Bu, —fu 5o +fo) f +2(fiuy) ' =

In this case

= (D))" D+ f(HD(f) = (fiuy)

In addition to the list of second order equations, §2 contains a
complete list of equations of the form

U = uy + @(u,uy,Uy)

satisfying the first four conditions of (0.7). The list contains, for
example, the equation

wo=uy—3uru, (0.9)

which is invariant under the fractional linear transformations u <>
(au + B)(yu + 8)'. The substitution

v=;f(ul_lu3—%uf2u§) (0.10)
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transfers the solution of (0.9) to a solution of the Korteweg—deVries
equation, v, = v; — 6vv,. Since the right side of (0.10) is the
Schwartzian derivative of the function u, the problem of inversion of
the transformation (0.10) is well understood. The inverse transforma-
tion to (0.10) has the form u = ¢,/@,, where @,, ¢, are a basis of
solutions of the equation (D* — v)p = 0, normalized by the condition
@19, — ¢,95 = 1. The transition to another normalized basis results in
a fractional-linear transformation of u.

Without comment we give another of the 17 equations in the list:

2

g 3(u, + 1)1/2u2

U, = uy — % (1 +u)tgu

+6u1+u3/2 +3ul+u 2+utgu+21+u
i ) i 1 I

(0.11)

In §3 we consider discrete evolution equations
4y = D*F(u, ,u u kel 0.12
L= DAF (i sttt s k), (0.12)

where

Dty s ) S Py trs)

We note that from the point of view of differential algebra Eq. (0.1) is
an abbreviated expression for the infinite system of equations

= = D*(F(u, ..., u,))

analogous to (0.12). The only essential difference of differential equa-
tions from the discrete case is that in the first case D is a derivation,
and in the second it is an automorphism. The distinction in the
properties of the operator D makes impossible an automatic transfer
of the results of §1 to the case of discrete equations. The specific
features of the discrete case are discussed in §3.1. In §3 we preserve
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the notation of §1, hoping that this does not cause any misunder-
standings. In particular, the system (0.12) is written in abbreviated
form as

In §3.2 for the example of equations of the form
u, = F(u_,,u,u))

it is shown that the first conditions for solvability of relations analo-
gous to (0.2), (0.5) allow us to distinguish a quite narrow class of
equations that deserve additional study. Characteristic examples of
equations of this class are

u = (a® + Bu + yu + 8§ 15 1 0.13
( ) (0.13)

Uu—u  uU_;—u
Uy —u)(u—u_ ‘
ulz( Bl ) (0.14)
U — u_,
wu_, +ut—1

An interesting problem is the comparison of the lists of equations
from §§2,3. For example, Eq. (0.14) is similar in its properties to Eq.
(0.9). Namely, Eq. (0.14) is invariant under fractional-linear transfor-
mations and reduces to the difference analog of the Korteweg—
deVries equation v, = v(v, — v_,) under the substitution

(us — uy)(u; — u)

C(uy— u))(u, — u)

It is necessary to remark that in §§1-3 all functions are assumed to
be analytic. The presentation is given in a language close to that of
differential algebra. This language proves convenient, since the pro-
posed classification is actually algebraic.
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In conclusion we wish to express our gratitude to S. I. Svinolupov
and R. I. Yamilov for numerous useful discussions of the contents of
this survey.

§1 Necessary Conditions for Existence of a Lie-Backlund Algebra
and Conservation Laws

1.1 Lie—Bdcklund algebra

Let u,u;,u,, ... be an infinite set of independent variables. Denote
by % the algebra of all functions depending on a finite number of
variables from this set. If 3/0u, f(u,u,, ..., u,) # 0, then the number
n will be called the order of f and denoted by ord f. It is clear that
pE S o +1(3/0u;) is a derivation of ¥, mapping u, into wu,,
where k=0,1,2, ..., uy= u.

We associate with each function f € 5 the derivation 81: 5 > 7,

taking u into f and commuting with D. On any function g(u, . . ., u)
the derivation 8f acts according to the formula
9,(8) = g«(f) (1.D)

where g, d=er2’f=0(8g/a u)D'. Derivations of the form (1.1) are said to

be evolutionary. Evolutionary derivations form a Lie algebra. It is not
difficult to verify that [8f, 8g] = 9,, where

def

h=g«(f) = fx(8) ={) &} (1.2)
Lemma 1.1 If h= {f, g}, then

[af_f*’ag_g*] =0, — hy

Proof From the definition of the operation * it is clear that

(B )u= By + Bay, (Da)s= D o ay, Vo, € F (1.3)
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Using these relations, we find that
h = g*(f) _f*(g)=>h*:|:g*>f*} +]:f*’ag:| +[a_/'> g*jl

The Lie-Backlund algebra A(F) of Eq. (0.1) is the set of all
functions f € 7 such that [0¢,3,] = 0. The last equality is equivalent
to the equation

(3= F)f=0 (1.4)

It 1s clear that A (F) is a Lie algebra with respect to the bracket (1.2).
The functions u, and F always belong to 4 (F).

The presence in the algebra A (F) of elements arbitrarily high order
is a characteristic feature of equations analogous to the Korteweg—
deVries equation (0.6). It is known (cf. [1], [10]) that all elements of
the Lie—Backlund algebra of this equation can be found from the
recursion relation

(n+1) (n) [€))

f=Ls.  f=u

where L is the operator given in the Introduction.
From Lemma 1.1 it follows that for any function f € A(f) the
equality

ap(f*)—[F*,f*}=8f(F*) (1.5)
is satisfied. Here and in the sequel, for any function h € &,

def

ah(zaiDi) = [ah ,Zal.Di] =2 ah(“:‘)D"

Suppose that ord f= n > 2. Comparing coefficients of D/, j = m +

n—1m+n-2,...,m+ Lin (1.5) and using the fact that the order
of the differential operator af(F*) is no greater than m, we get
dF af of ( 3F Y _» ( of of
D - - k - D = c y ottty > >
" ou, ( duty ) du, 3w, ) Prl 3u,, 5u, F

k=nn—1,...,2 (16
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(n) . . . .
where (';>k are differential polynomials. From relations (1.6), we can

express df/du,,df/du,_,, ..., df/0u, in terms of F. In particular,
form > 2

af B 8F n/m
au —Const(ﬁ) s

n m

since the right side is equal to zero in the first of Egs. (1.6).

THeOREM 1.2 Let F(u, ..., u,) be a polynomial, m > 2. Then, if
0F/du,, = const, any element f(u,...,u,) € A(F) has the form
fGu, oo u)=fi(u, ..., w)+ f(u), where f, is a polynomial. If

dF/du, = const, 0 F/du,,_, = const, then f is a polynomial.

Proof Without loss of generality we may assume that 3 F/du,, = 1.
In that case the Egs. (1.6) have the form

o L) L) kmmncn

duy QU | du

n

(1.7)

We note that the number of equations has increased by one, since the
order of the operator d,(F) on the right side of (1.5) has been
reduced by unity. Using the fact that the polynomial nature of
D(3f/9dw,) implies the same for df/du,, we find from (1.7) by
induction that 3f/0u,, ..., df/du, are polynemials. The first state-
ment of the theorem is thus proved. It remains to note that for
0F/0u, _, = const there is an additional decreasing of the order of
the operator on the right side of (1.7), and the relations (1.7) are
satisfied for k=n,n—1,...,0.

The example of the equation u, = u, + u}, whose Lie-Bicklund
algebra contains the element e, shows the importance of the require-
ment 0 F/du,,_, = const.

We note that the structure of the algebra A (F) depends essentially
on the subalgebra A4, comnsisting of elements of A(F) of order no
higher than unity.

Hypothesis  The subalgebra A, is an ideal. The algebra A(F)
decomposes into the semidirect product 4 (F) = 4, X A,, where the
subalgebra A4, is commutative.
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1.2 The algebra /f(F)

Dropping 9,(F) on the right side in (1.5), which does not affect the
form of Eqgs. (1.6), we come to the equation

[8,— Fu, L] =0 (1.8)

We shall be interested in the solvability of Eq. (1.6) in the algebra
Z ((D ")) of formal series of the form L= 3"___aD' with coeffi-
cients in % . We recall that the operation of multiplication in
F ((D ") is defined by the formula

n(n— 1y - (n—k+l)Dk(a)D"_k, nel

For brevity we shall call the elements of % ((D ~1)) operators.

It is obvious that the set of solutions A(F) of Eq. (1.8) form a
subalgebra in % ((D ~")). For any operator L € % ((D ")) of order
n, there exists (cf., for example, [11]) an operator L'/" € % (D ™))
such that (L'/")" = L. The operator L'/" is unique up to multiplica-
tion by an nth root of unity. Its coefficients are differential polynomi-
als in the coefficients of the original operator L.

LevMa 1.3 Let L € A(F), ord L = n. Then L'/ € A(F).

Proof Set M = L'/". Substituting M” in Eq. (1.8) and denoting
[0 — Fu,M] by R, we get

RM" "+ MRM" *+ - - + M""'R=0

Equating the leading coefficient in the operator on the left side of this
equation to zero, we find that the leading coefficient R is equal to
zero, i.e., R =0.

LEMMa 14 Let L € A(F), oordL = n # 0. Then A(F) =
S(CA)

Proof Let L EA(F) ord L = k. Equa[mg in the relation aF(L)
[F*,L] the coefficients of D *m=1 we find that the coefficient of
the operator L is equal to ¢((3F/0u,, )"/'" ¢, €C. From Lemma 1.3 it
follows that L*/7 EA(F) and therefore the leading coefficient in
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L"/" is equal to ¢,(3F/du,)*/™. Consequently the order of the opera-
tor L can be lowered by subtracting the operator ¢ c; 'L*/". Continu-
ing this process, we arrive at the expansion

!

k
L= > LY, &ecC
We denote by A =4, (F) the set of all operators L € % (D ™")
such that
ord[d — Fy, L] <m+ordL —j—1

It is clear that F (D ")) = A,D A, DA, D - - DA = A(F).

LemMMA 1.5 An operator L of order »n belongs to A (F) if and only
if L'/" belongs to A. (F).

Proof We must verify that
ord[d; — Fu,L] <m+n—j- lc)ord[ar— F*,L'/"} <m—j
This follows from the formula
[8p = Fu, L] =[aF— F*,L'/”]L(”‘”/"
+Ll/"[8F— F, ’Ll/n]L(n—Z)/n
o+ LUTNe e — Fy LV,

We shall say that Eq. (1.8) is solvable in A, if AAJ contains at least
one operator L of nonzero order. In this case, by virtue of Lemma 1.5,
A contains elements of any order. Moreover, followmg the proof of
Lemma 1.4, one can show that an arbitrary operator Le A admits
the representation

R k k—j
L= E L+ 3 bD', ¢e€C, beF, (1.9)
+ 1=

— 0

where n = ord L. The expansion (1.9) is unique.
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LemMA 1.6 Suppose that the Lie-ABéicklund algebra A (F) contains
an element f of order n. Then f, € 4, _,.
The assertion of Lemma 1.6 follows from the formula (1.5).

TrEOREM 1.7 1f A(F) contains elements of arbitrarily high order,
then there exists an operator L € % (D ~")) of any fixed order r,
satisfying relation (1.8).

Proof From Lemmas 1.5, 1.6, it follows that for any i > 0 the set

ﬁf,- contains an operator of order r,
L=4p+%9Dp"+. ..

The leading coefficient of the operator L, is proportional to
(8F/3u,)”™. We shall assume, replacing if necessary L, by ¢,L;, that
all the operators L;, i > 1 have the same leading coefficient «;. We
construct a sequence of operators L/ € /4,, i > 2, with leading coeffi-
cient equal to «,, such that ord(L; — L/, |) < r — 2. If the condition
ord(L, — L, ) < r — 2 1s satisfied for an infinite set of indices 7, then
we choose for the { L/} a subsequence of the sequence {L;}. In the
opposite case, by changing to a subsequence we may assume that
ord(L,,, — L)=r— 1. Then the operators L~, =L.,,— L, € AA,-,
and therefore their leading coefficients are proportional. It is easy to
verify that with a suitable choice of ¢;, the first two coefficients in the
operator L' =L, + ¢;L;, i >3 coincide with the leading coefficients
a,, a, of the operator L) = L,.

Continuing this process we arrive at a sequence of operators
M =L, M,=L,, ..., satisfying the conditions

A

M, EA,, ord(M, ., — M,)<r—k.

The remaining part of this section is devoted to a discussion of the
conditions for solvability of Eq. (1.8). These conditions are formu-
lated in terms of residues:

u -\ def
res( > a,-D’) =a_,
1

= — o

of operators A;.
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LeEmMMA 1.8 Suppose that M,N € % (D ~")). Then res[M,N]
€ ImD.

Proof It is clearly sufficient to prove the assertion for monomials
M = aD* N =bD' For k + < —1 we find that res{M, N] = 0. For
k+1[7> —1, we have

k pgq =Ty (T = 1) (1)
res[aD ,bD'| = CESES]

X{aDk+l+l(b) + (_l)k+/ka+/+l(a)}

e ImD.

Because of Lemma 1.6 the operator F, € AA,,Hl and, consequently,
Eq. (1.8) is always solvable in 4, _,.

THEOREM 1.9 Suppose that L is an arbitrary operator of first order
in A,,,,, k> — 1. Then the condition

dp(resL*) €Im D, k #0;
(1.10)
res(L_laFL)EImD, k=0

is necessary and sufficient for the solvability of Eq. (1.8) in A~m+k‘l'

Proof Suppose that Eq. (1.8) is solvable in /fm+k+1. Then there
exists an operator of first order L€ A, ,,.,, whose first m + k
coefficients coincide with the coefficients of the operator L € 4, ,.

In fact, for L, € A,, .., ordL, =r, the operator L admits the
representation (1.9):

1
L= > c¢L{/7+bD'"" " k4t ...
2—m—k

and we can choose for L the expression S, L Eﬁf,ﬂk“. The
operator L satisfies the relations

res L* =res L, ord{&F—F*,E"]< =2
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Therefore
dp(res L*) =3 p(res L*) = res[F* ,L~"].
From this and Lemma 1.8 it follows that the condition (1.10) is
satisfied for k # 0. For k =0 the condition (1.10) follows from the

relations

res(L™'8,L) =res(L™'9,L) = res[LN_l,F*E}

Suppose that condition (1.10) is satisfied and k& % 0. Let us show
that there exists an operator

M=aD¥+ - +agy+- - +a_,D'""+aD ™"

belonging to AAm+,<+l. We set the coefficients a;, . . ., a,_,, equal to
the corresponding coefficients of the operator L*. Then M € A4, ,,
and the condition M € 4,,, .., is equivalent to the condition

0p(resM) = res[F*,M]

Since res M = res L¥, the left side of this equation belongs to Im D.
The right side, according to Lemma 1.8, can be rewritten in the form

res| 3E pm ap - —+-DH=mD(a aF)+DH
du du

m m

where H is a differential polynomial in the first m + k coefficients of
the operator L*. Thus the last coefficient « of the operator M is
calculated using the formula

-1
= (ma—F) (D~'3presL* — H)

The case of k = 0 is treated similarly.
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CoRroLLARY OF THEOREM 1.9 Equation (1.8) is solvable in /‘fzm_z
if and only if the conditions

dpres(Fy/”)EImD,  —l1<k<m=3, k=0 (L)

3 aF d
 du du

m—1 m

)EImD, m >3 (1.12)

are satisfied.

Proof The operator L = F{/™ € 4, _,, and the first of conditions
(1.11) guarantees, because of Theorem 1.9, the solvability of (1.8) in
AAm. For m = 2 we have 2m — 2 = m and the corollary is proved. For
m > 3 we consider (cf. the proof of Theorem 1.9) the first order

operator L~d=ele € ffm, such that ord(L, — L) <3 — m. The first
m — 1 coefficients of this operator L, are the same as for the operator
Fl/™ and condition (1.10) for k = 0, as is easily checked, coincides
for L, with condition (1.12). If condition (1.12) is satisfied and m > 4,
we replace the operator L, by the first order operator L, € /me such
that ord(L, — L,) < 2 — m, etc. It remains to be shown that, because
of (1.10), the condition for solvability of Eq. (1.8) in AAm+k+l 1s
formulated in terms of the first k + 2 coefficients of the operator
L EAAerk. Since the first m — 1 coefficients of the operator L,,
i=1,2,..., are equal to the corresponding coefficients of the opera-
tor F/™, conditions (1.10) and (1.11) coincide for k < m — 3, and
from the fulfillment of conditions (1.11) there follows the solvability
of 18) A, . popm+tk+tl<m+m-3+1=2m-2.

The conditions (1.10) formulated above for the solvability of Eg.

(1.8) have the form of conservation laws dzp, = Dgq,, k= —1,0,1,2,
3,.... According to the Corollary of Theorem 1.9, the densities
P—1 Po> P> - - - » Pm—3 are expressed explicitly in terms of the function
F. For k> m — 3 the density p, is, generally speaking, expressed in
terms of p_\, ..., p_1;g_1, ..., qgw_;, and the function F. For
example, for m =2
_(aF )\ _OF / 3F ,
P—I—(a—uz) ) Po—a—ul B_uz— 19— (1129
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1.3 Conservation laws

A conservation law d,p = Dg with a density p €.5 is said to be
trivial if p € Im D + C, or, what is the same thing,

Let us find the necessary conditions for the existence of an infinite
series of nontrivial conservation laws for Eq. (0.1). Applying the
operation # to both sides of the equality d,p = Dg, we find that
P«(F))x= D o q4. Then (p(F))y = — g« D, where

(Sat)

It is not difficult to show that the coefficient of D° in the operator
(p+(F))y can be written in the form (3, + F;)(8p/du). Equating this
expression to zero, we arrive at the well-known (cf. [12]) equation

tdef

=S (—1)*D* e g,

(aF+ F;)g=0 (1.13)

for the variational derivative g of the density in the conservation law
of Eq. (0.1).
The operation * changes Eq. (1.13) to the equation

Fig*+g*F*+8F(g*)+kZO(Dg"')(Gk)*=O (1.14)

where G, = G, (u, ..., u,,) are the coefficients of the differential
operator Fy. The last term in (1.14) is an operator of order no higher
than 2m. Therefore, for ord g=n > m + 1, the equations for deter-
mining the leading coefficients of the operator g, coincide with the
equations for the coefficients of the operator s €.% ((D ~")) of order
n, satisfying the relation

3£(S)+ FLS + SF,=0 (1.15)

In constrast to Eq. (1.8), Eq. (1.15) cannot in principle have a solution
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in the case of even order m of Eq. (0.1). In fact, for even m
ord(F,’,S + SF*) =m+n>ordd.(S)

It then also follows that for even m Eq. (1.13) has no solutions of
order higher than m (cf. [13]).

From Lemma 1.4 1t follows that if Eq. (1.8) has at least one
solution, then it has a solution of any order. Equation (1.15) does not
have this property. However, from the existence of two solutions of
different order it follows, as we shall show below, that there exist
~ solutions of any order.

LemMa 1.10 Suppose that §,,S,€.% (D ') are solutions of
Eq. (1.15) of orders n;,n, (n, > n)). Then L = S,7'S, is a solution of
Eq. (1.8), and the general solution S of Eq. (1.15) is written in the
form

Proof We have

I

[05,87'8,] = S [8-.8,] = S '[8-.5,]5,'S,

= —Sl“(FLSZ + SzF*) + S;‘(F;s, + SIF*)S,_ISz
=[F,, ,S;lsz}

Similarly one verifies that S,L, is a solution of (1.15) if L, is an
arbitrary solution of (1.8). The formula for the general solution §
follows from Lemma 1.4.

To underline the analogy with Theorem 1.7, we denote by B(F)
(B(F)) the set of solutions in & (F (D ~")) of Egs. (1.13) and
(1.15), respectively. We denote by ék the set of operators S €
Z ((D ~Y) satisfying the condition

ord(ap(S) + FLS + SF*) <ord(S)+m—1—k
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We shall say that Eq. (1.15) is solvable in ék if ék contains at least

one nonzero element. We recall that from the solvability of Eq. (1.8)

in Ak for all kN there follows (cf. the proof of Theorem 1.7) its
solvability in A = A(F)

TrHEOREM 1.12  Suppose that B(F) contains elements of arbitrarily
high order. Then Egs. (1.8), (1.15) are solvable in 4, , B, for all kK €N,
and there exist operators of first order L € A(F), S € B(F) such that

S'=-8, L'=-SLS"!

Abbreviated Proof Suppose that g, g, are solutxons of orders n, n,

(ny, > ny) of Eq. (1.13). From (1.14) we find that S = (g,)*E Bnﬂn b
i =1,2. Following the proof of Lemma 1.11 we verify that L= s
X S, € A, k=n,— m— 1. Since the orders n, and n, can be chosen
arbitrarily large, Eq. (1.8) is solvable in Ak for any k and, conse-
quently, there exists an operator of first order L, € A(F)

The element g€ B(F) of order n generates an operator of first
order g, L~ "€ B,, m—1- Since n can be chosen arbitrarily large, we
can apply to the sequence of operators thus obtained in B, k — oo,
the arguments used in the proof of Theorem 1.7. Thus from the
solvability of (1.15) in ék for any k there follows the existence of a
first order operator in }§(F).

Together with the solution S of order n, another solution of Eq.
(1.15) is the operator S* 4+ (—1)"S of order n, and the operator SL, of
order n + 1. Thus Eq. (1.15) has a solution of first order S, and a
solution of second order S,, such that S{ = —§,, §; = S,. [tis easy to
verify that the operators S = S, and L = S,”'S, are connected by the
relation L' = —SLS "

Suppose that the order m of Eq. (0.1) is odd (m > 3). In this case,

relation (1.15) is equivalent to the chain of equations

oF _ OF ) _ oF
mmD(ak)+((m k)D(aum) 2_8u ‘)ak

()
= Ru(@srs -+ a,, F), k=nn—1,... (1.16)

y Yy

for determining the coefficients of the operator S =3"_a,D" (cf.
(1.6)). It is easy to check that the first of the equations of the system
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(1.16) has the form
0F D(a,) + ((m— n)D(a%‘lE) —28—1:)61”:0

m—
8um m al’lm—l

In order that this equation have a solution g, € % it is necessary and
sufficient that

oOF /) 3F
Tu / 5, €ImD (1.17)

Relation (1.17) is a criterion for solvability of (1.15) in El. Con-
ditions for solvability of Eq. (1.15) in B,, k < m — 2 will be obtained
below. From (1.15),

ord(F; + SF*S_‘) <0
Then, as is easily verified, it follows that
ord{(Fi/'")’ + (- l)k“SFf/'"S“} <k-m keN
Thus
res(F,’;'/'")I= (= DfresSFE/"S =", k=1,2,...,m=2
and

res{(F’;/m)/ + (- I)"“lFﬁ/m} =(- l)kres(SF,’;'/'"S" _ Ff/'")

= (- l)kres[S, Fi(/’”S_']

Therefore (cf. Lemma 1.8) for the solvability of (1.15) in ék, k>1, it
follows that

res{(Fi/"’)’ + (—1)"“F5;/'"} elmD, k=12...,m—2
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For odd k these conditions are satisfied automatically, since res M
= —resM' for M €. % (D ™"). For even k they are written in the
form

resFK/"meImD, k=24,...,m—3 (1.18)

One can show that the conditions (1.17), (1.18) are not only necessary,
but also sufficient for the solvability of (1.15) in B, _,. We further
note that for dF/du,, = const, an additional relation of the form
(1.18) with & = m — 1 is the condition for solvability of (1.15) in Em.

Relations (1.17), (1.18) show that solvability of Eq. (1.15) imposes
on the right side of Eq. (0.1) much stricter conditions than condition
(1.11) for the solvability of Eq. (1.8). In particular, from (1.17), (1.18)
it follows that the even-numbered conservation laws enumerated in
the Corollary to Theorem 1.7 are trivial in the case of solvability of
Eq. (1.15). In the Theorem given just below, the conditions for
solvability of Eq. (1.15) are formulated in a form analogous to (1.18).
The proof of Theorem 1.13 will be given after the proof of Theorem
1.16.

Tueorem 1.13  Suppose that the conditions of Theorem 1.2 are
satisfied. Then there exists a first order operator L € A(F) such that

resL* €eImD, keN (1.19)

In contrast to the conditions (1.11) of Theorem 1.9, the form of the
relation (1.19) depends on the choice of L € ff(F). For a first order
operator L of the general form (cf. Lemma 1.4) relation (1.19) is
replaced by the condition: the residue res L for any k € N is a linear
combination of residues of odd powers of L modulo Im D.

1.4 Conditions for formal linearizability

In this Section we discuss several variants for strengthening condi-
tions (1.10) for solvability of Eq. (1.8). One of these variants (condi-
tions (1.17), (1.19)) was mentioned in the preceding Section.

Definition 1.14 The operators M,N € % (D ~")) are said to be
equivalent (M~N) if there exists an operator T € % (D ")) such
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that

TMT '=N (1.20)

Lemma .15 For given M, N, the general solution 7 of Eq. (1.20)
is given by the formula

n
T=T, > M/, ¢eC (1.21)

where T, is one of the solutions of (1.20), r = ord M.

Proof The operator T defined by formula (1.21) satisfies relation
(1.20). Suppose that T is any solution of (1.20). Then 7'~ 'T commutes
with M. Therefore (cf., for example, [11]) the operator 7~ 'T can be
represented in the form S ¢,M /"

It is clear that equivalent operators have the same order and
identical leading coefficients. Furthermore, equivalence of M and N is
tantamount to equivalence of M'/" and NY’, r=ord M = ord N.
Therefore, without loss of generality we may assume that in relation
(1.20)

M=aD+ay+a_ D'+ -+
(1.22)
N=aD+by+b_ D'+ .-
By virtue of Lemma 1.15 one may also assume that ord 7 = 1.

THEOREM 1.16 The operators (1.22) are equivalent if and only if

a~'(ag—by)€ImD (1.23)

and
res N — M*yeImD, keN (1.24)
Proof Suppose that T=a;D + ag+ a«_ D "'+ -+ . Comparing

coefficients of D in (1.20) we get an equation for determining «,:

af 'Day — a~'Da = a~(ay — by)
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The condition for solvability of this equation in % is relation (1.23).

Since the conditions for solvability are unchanged if we replace M, N

by M* N* the following equations for determining ag,c_,, ... can

be obtained by equating coefficients of D ™' in the relations
TM*T'"=N* k=12 ...

We rewrite the equality res(7TM*T ~' — N*) =0 in the form
res(N* = M*)=res[ TM*, T™'].

One can verify that (cf. the proof of Theorem 1.9) in order for the
coefficient a,_, € ¥ to be determined from this relation it is neces-
sary and sufficient that res(cN* — M*) € Im D.

Theorem 1.13 of the preceding Section is an immediate conse-
quence of Theorems 1.12 and 1.13. In fact, because of Theorem 1.12
there exists a first order operator L € AA(F), satisfying the condition
L'~ — L. From formula (1.24), for M = L, N= — L', we get

res{L"~(=1)"(L")'} €ImD

Then (1.19) follows for n = 2k.

Definition 1.17 Equation (0.1) is said to be formally linearizable if
the densities p, in the conservation laws (1.10) satisfy the conditions

p, EIMD+C, n=-101.2,... (1.25)

We recall that, because of (1.10)-(1.12),

aF —/m
p“—(ﬁﬂ) ’

oOF OF 0, m >3
- - 26
Po= 50,/ du, [p_l'D—Ian_l, m=72 (1.26)
p,=resL”, n=1,2,3,... (1.27)

From Lemma 1.4 it follows that the conditions (1.25) do not change
their form when we replace one first-order operator L € A(F) by
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another. Moreover, because of Theorem 1.9, for any k£ € N, condition
(1.25) with n = k 1s independent of the conditions with n > k, and is
formulated in terms of the first k + 1 densities p_ |, pg, . - ., pr—, In
the conservation laws (1.10) (cf. the Corollary to Theorem 1.9).

THEOREM 1.18 Suppose that 9 F/du,, = const. Then the following
assertions are equivalent:

1) Equation (0.1) is formally linearizable;

2) There exists in /f(F) an operator L~ D;

3) There exists an operator 7 € % ((D ') such that

T(E)F—F*)T“=8F—_chDk, , €C (1.28)

Proof The equivalence 1)< 2) follows from Theorem 1.16. From
(1.28) we find that the operator L = T ~'DT commutes with 3, — F,
and, therefore, 3)=2). The converse is also true since, from the
relations,

L=T7"'DT, [L3,—F,]=0

it follows that the operator T(3, — F,)T ~' commutes with D, and,
consequently, satisfies the relation (1.28).
In similar fashion one proves

THEOREM 1.19 The following assertions are equivalent:
1) Eq. (0.1) is formally linearizable;
. d
2) There exists in A(F) an operator L~ D’ =et(8F/8um)l/'"D;

def
3) There exist T €. (D "), y €.F, such that for 3% =0, +
vD’, the relations

T(Bp— F )T ™' =05 - _zooci(D')f, ceC (1.29)
[0-,D']=0 (1.30)

are satisfied.

We note as a supplement to Theorem 1.19 that from (1.30) it
follows that the first of conditions (1.25) is satisfied, and also the
formula y = — D ~'(0pp_)).
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The standard example for Theorem 1.18 is the class of equations
(0.1), which are reduced to linear equations with constant coefficients
by the differential substitution

’

W= @(uuy, ..., u,) (1.31)
For equations of this class the operator 7 of condition 3) is differen-
tial (cf., for example, [2]) and coincides with ¢,. The form of the
substitution (1.30) can be found by a direct computation analogous to
that in the example presented below.

Example 1.20: Let us find a substitution «’ = ¢(u, #,) that reduces
the equation

U =u, — =~ — (1.32)

to linear form u, = uj. Substituting «’ = ¢(u,u,) in the equation
u, = uy, we find

2
3 Uy 3 Uyliy
@o(“z—zu—)+¢1(l‘4_§ LT
1 !

3
ke

2
u)

o

_ 2

= @ Uy + Qo3 + 3 1 Uy + 3gu5 + 3aou Uy + 30 U1,
+ w+3 2y +3 woul + ul
Pooot1 Poor 41Uy Dot Uy T Qs

where @, = 3¢ /0u, ¢, = d¢p/du,, etc. Comparing terms containing us,
we find 3¢@qu, + 3¢, ,u, + 2 ¢,(1,/u,) = 0. Since ¢ does not depend
on u,, we have @, + ¢,/2u, =0, ¢y, =0. From this, ¢ = cu!/? +
A(u), ¢ €C. Further fixing of the form of the function ¢ gives the
formula for the substitution

o=cul’*+c, c,eC

It 1s clear that, without loss of generality, we may setc =1, ¢, =0.
A natural generalization of the Definition 1.17 leads to the case
where almost all (i.e., except for a finite number) of the conservation
laws (1.10) are trivial. In this case we can introduce a differential
extension of the algebra % , adding to the variable u new differential
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. (i . -
variables u) = D ~'p;, corresponding to the densities (1.26), (1.27) of
the nontrivial conservation laws (1.10). The differential extension of
the algebra % enables us to generalize formula (1.31), including

among the arguments of the function ¢ not only w,u,u,, ..., but
) ) ) M) (ip)
also the new differential variables u e, % . The procedure for

calculating the explicit form of the substitution
(i) (ip)
u/=q)(ul,...,&,u,u,,.‘.,un) (1_33)

reducing the Eq. (0.1) to a linear one, is not essentially different, since
3,4 € F, trom the case of (L31).

Example 1.21 For the equation
u, = uy + wu, + Suui + Ju'y (1.34)
we have

- OF a—F=u26£ImD+C

0" Ju, /' du,

Since 9.p, € Im D, we can introduce a differential extension % [v),
v=D " 'py= D ~'u’. The substitution

u = uexp{%D_'uz}

relating Eq. (1.34) to the linear equation u; = u3, is found by direct
calculation, as in the Example 1.20.

For any equation having a conservation law of zero order with
density p(u), the introduction of v = D ~'p leads to an equation of the
form v, = F(v,v,, ..., ,), 0F/3v=0. It is not difficult to verify
that in Example 1.21 this equation for v is equivalent to the equation
of Example 1.20 to within the substitution v <> {/(u).

At the conclusion of this Section we consider briefly the question of
the interrelation of the algebras A(F),ff(F) and A (F’),,‘f(F’) of the
equations

u = Fluuy, ..., u,), u = F'(u,u), ..., u,) (1.35)
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related by the differential substitution (1.31). We denote by ¥ ’ the
algebra of functions of the variables v/, u, 5, ..., with the deriva-
tion D' = >u/,,8/3u/. From the point of view of differential algebra
the substitution (1.31) is an injective homomorphism o:.% = 7,
satisfying the two conditions

oD’ = Do, dz(Imo) C Imo (1.36)

Because of the first of conditions (1.36), the action of ¢ on any
def
element of % ' is determined by the function ¢(u, ..., w,) = o(u).

The second condmon guarantees the correctness of the definitions
def
dp = 0"'3,0, s (") of the evolutionary derivation 3. and the

right side F”, associated with the transformed equation (1.35).

Suppose that g € A(F), i.e, [a 37 = 0. It is clear that if 9 ,(Imo)
CImo then 67'9,0 is an evolut1onary derivation in %’ commutmg
with 9. Thus, the subalgebra in A4(F), consisting of elements g
EA(F) such that d,(Ime) CImo, is mapped isomorphically into
A(F).

Conversely, suppose that g’ € A(F"), 8 = 08 0~ ' It is clear that 8
is a derivation in Imo, commuting with D The question arises
" whether 8§ is always extendable to a derivation in % . The Example
1.20 shows that the answer to this is negative. In fact, an arbitrary
element g’ € A(F’) in this particular case has the form g’ = > cu.
We now find

( ) ZCD( ):>6(u)—2\/u_lch( >

Therefore, for the existence in % of an evolutionary derivation 9,
such that 9|, = &, it'is necessary and sufficient that the condition
J_Ec D"(\/—) € Im D be fulfilled. It is not difficult to verify that
this condition is satisfied if and only if &= =0 for even i.

Although the algebras A (F’) and A(F) are closely related, the
difficulties with the definition d, =0 ag,o ! disappear if we go over to
the operator language.

LemMMA 1.22 Suppose that conditions (1.36) are satisfied. Then,
from the solvability of the equation [3, — Fj,L] =0 in & (D ™")),
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there follows the solvability of the equation [3— Fy,L]=0 in
F (DY),

Proof From the formulas ¢ = o(w’), F' = dz(u’) it follows that
@«(F) = o(F’). Applying the operation * to this relation, and using
the fact that (oF"),= 6F,0 ™ 'p,, we get

o(aF' - F;)U_I = ‘P*(aF - F*)(P_:lk (1.37)

We note that for any operator of Z (D'~ ")),

def

o(Sa(D))o™'= So(a)D’

Setting L = @i '(6L' 0™ ey, from (1.37) we get the assertion of the
Lemma.

Remark The assertion of Lemma 1.22 remains valid if we replace
the question of the solvability of Eq. (1.8) by the question of solvabil-
ity of Eq. (1.15). Then, by virtue of (1.37),

S=@i08'c \p,

In papers [14], [15], in connection with the equations u, = u’u,,
u, = uu,, have been considered the differential substitution

u=o(u ..., up), x'=y(u, ..., u,) (1.38)
which reminds one of the Legendre transformation. From the alge-
braic point of view, to the substitution (1.38) there corresponds an
injective homomorphism ¢: % '— % with the properties

oD’ = aDo, (0 + v, D)(Imo) CImo (1.39)

generalizing (1.36). In (1.39) « 1s a given function in %, while the
function y € F is determined from the commutation relation

(3p+ yaD,aD]=0 (1.40)
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The criteria for solvability of (1.40) are formulated (cf. Theorem 1.19)
in the form 3¢~ '€ImD. It is not difficult to check that for a
homomorphism ¢ satisfying the conditions (1.39), (1.40), there re-
mains valid the assertion of Lemma 2.12 and formula (1.37), where

def

P =a(u), o(zai(D’)’)a_‘ = Eo(ai)(aD)i.

§2 Equations of Second and Third Order

In this Section we shall enumerate evolution equations (0.1) of order
m = 2,3, satisfying a few of the first conditions (1.10) of Theorem 1.9.
We verify that for these equations at least the next condition (1.10) in
order is satisfied automatically. However, we do not possess at present
a proof of the solvability of Eq. (1.8) for all the equations enumerated
in this Section.

For m = 2 one has succeeded, due to the efforts of S. I. Svinolupov,
in overcoming the difficulties associated with the investigation of the
compatibility of the system of partial differential equations equivalent
to the first three conditions (1.10) of a function F of general form. For
m =3, the analogous problem is solved for equations satisfying the
condition 3 F/du, = const.

Since the conditions for solvability are invariant under point trans-
formations u <> @(u), the classification is carried out to within such
transformations. A complete solution of the classification problem
requires the investigation of the equivalence of the equations obtained
from the point of view of transformations of the form (1.33), but this
interesting question goes beyond the scope of the present survey.

The solvability conditions (1.10) to be considered have the form of
conservation laws. Therefore, in the classification, together with mak-
ing more precise the form of the equation u, = F, we determine the
form of its conservation laws of lowest orders. We recall that the
order of a conservation law p, + g, =0 is the lowest of the orders
mutually equivalent densities. Functions p, p are considered to be
equivalent (p = p) if their linear combination belongs to Im D + C.
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2.1 Classification of equations u, = F(u,u,u,)

For m = 2 only the first of conditions (1.10) is explicit. We write it in
the form

def( aF)_I/z 2.1)

C(’EImD,_ o = W
2

The next three conservation laws (1.10), with indices k£ =0, 1,2, can
be written (cf. (1.12")), by replacing the densities p, by equivalent
ones, as follows:

(aB), € 1m D, le:ef—ag—uF—l—D_’(a,)+D(zx—') 2.2)
1

-1, BF
“ oug

+ 7’8D CH %D (eB),] (23)

2
vy, €EIm D, 'BT

¥yD ~'(a) — aD ~'(y,) €Im D (2.4)

First let us consider the general question of conservation laws for
the second order equations.

Lemma 2.1 The order of the conservation laws for the equation
u, = F(u,u,,u,) are 0 or 1. Equations having conservation laws of
order zero are quasilinear, i.e., they satisfy the condition

—1/2
da _ o= ( a_F)
du, du,
For equations with conservation laws of first order,

da
Ba o, Ja_g
du, dus

The proof of this, as well as the following (Lemmas 2.2, 2.3)
assertions is elementary, and we give the proof only for Lemma 2.3.
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From Lemma 2.1 and the condition (2.1) it follows that the func-
tion a(u,u,,u,) is linear in u,. Indeed, if the conservation law (2.1) is
nontrivial, the lemma is applicable; if it is trivial, then

of

0
a(u,u,uy) = Df(u,u)) = u, 8f +u, 3

For 9a/du, # 0, the equation under consideration is written in the
form

u,=[A(uu)uy + B(u,u)] ™'+ C(u,uy) (2.5)

Its conservation laws have order 1 or are trivial. The equation with
da/du, = 0 is quasilinear and is conveniently written in the form

u, = Df(u,u)) + C(u,u))u, (2.6)

Unlike (2.5), this equation cannot have conservation laws of first
order.

We begin the classification of quasilinear equations with a sharpen-
ing of the result of Lemma 2.1.

Lemma 2.2 The criterion for existence of nontrivial laws for equa-
tion (2.6) is dg/du, = 0, where

e /Y

du, /' du,

For g = g(u) the density in any conservation law is equivalent to the
function

a(u) = f exp{j ”)du”} dw

Lemma 2.2 and condition (2.1) allow one to find the form of the
function e(u,u,) = (3f/du,)”'/? for the quasilinear equations (2.6).
If the conservation law (2.1) is trivial, then

a(u,u;) = Dh(u) + const
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For A’ = 0 we get the equation
u, = u, + C(u,u))u, (2.7)

For b’ # 0, after the point transformation u <> h(u), we have A(u) = u,
a = u; + const. The corresponding equations have the form
Uy
u = — +Cu,u))u, (2.8)

Uy
or

Uy

“T (u,+1)2

!

+ C(u,u))u,

The equations enumerated exhaust, to within transformations u <>
h(u), the list of quasilinear equations for which the conservation law
(2.1) is trivial.

- If the conservation law is nontrivial, then, in the notation of
Lemma 2.2, we have

a(u,u))=a(u)+ Dh(u)
For &' =0, setting a(u) = u~', we get
u = uu, = C(u,up)u,
For A’ # 0, setting h(u) = u, gives

_uyta'u,
u = ——— +C(u,u))u, (2.9)
(u, + a)2

The form of the right side of these equations is determined from the
condition (2.2) and Lemma 2.2. For example, for Eq. (2.8) we have

_ _pBc Be [/ Of _ 28c
aff = —u Bu, +2Dlnu,, ™ / B u; Bu
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If there is a nontrivial conservation law, then by Lemma 2.2,
2 dc¢
uy~— = g(u
| aul g( )
In the opposite case the conservation law (2.2) is trivial, i.e,,

3
ufa—jl = h(u)u, + A, A =const

In the first case, ¢ = —u,” 'g(u) + f(u), in the second
h(u) ) |
= - 2+ f(u
u 2u,2 S

In both cases the third and fourth conditions are satisfied automati-
cally. For Egs. (2.7) and (2.9) the third condition brings further
sharpening. Below we give a list of quasilinear equations satisfying
conditions (2.1)—(2.3):

u, = Uy + uuy, a(u)=u; (2.10)

u = u(uy+ ),  a(u)y=u"" (2.11)
w, _a’(¥)

U =—=— — + f(u)u,; 2.12
u? a (u> f( )ul ( )

u, = u—i + uL +f(u) + g(u)u,; (2.13)
u; I

) + [Cl+f(“1+1)]2_f/“12
(4, + 1) (cr+ ) + 1)

Uy a” a” a”

- + —alg(aly 2
ey oy w tee) .
u =2 * a’a —aly(al (2.16)

" (wta} duta) ada g g2) '
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We have omitted the linear equation u, = u, + c,u + ¢, from this
list. Besides, we can add a term c,u, on the right side of the equations,
without affecting the solvability of Eq. (0.2). Somewhat unexpectedly,
the coefficients of Egs. (2.12)~(2.16) include arbitrary functions a(u),
f(u), g(u). We recall that the group of point transformations has
already been used to bring the equations to their simplest canonical
form.

Equations (2.13), (2.14) have only trivial conservation laws. The
coefficients of the remaining equations (2.10)—(2.12), (2.15)—(2.16) are
written in terms of the density a(u) of the nontrivial conservation law.
All the equations having a conservation law (cf., the Example, 1.21)
admit the substitution » = D ~'a(u). The equation obtained as a
result of this substitution, v, = F, is invariant under the transforma-
tion v<>v + const, ie., F= F(v,,v,). After the substitution, Eqgs.
(2.12), (2.15), (2.16) become essentially nonlinear, and are written in
the form:

—1

" Foye, 5 212

(o) 8(2) ( )
K — 1 c,v? 15
Y f(o)(f(o)o 1) * f(o0) oo (2.15%
v, = —1 1 o /
ERNICOICCHR Y ’ f(o)v, T (2.16')

Here f = f(v,) = 1/a’'(x) with v, = a(u).

For essentially nonlinear equations of the form (2.5) the connection
of conditions (2.2)-(2.4) with the conditions for the existence of
nontrivial conservation laws is established by means of the analog of
Lemma 2.2.

LemMa 2.3 For Eq. (2.5) the criterion for the existence of nontriv-
lal conservation laws is the relation

48 B\, _ (&, 8 ) B
(au du, Au,)g (aul?+au[ “ )Au] (2-17)
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where

def -1, dlnd _B 9 _ B 3
Lup+ 2 +A(Aul+u, L2 au,)c (2.18)

When condition (2.17) is satisfied the density of the conservation law
is calculated from the formula

a(u,u)) =f“'du’f“/'du” exp{ rwg(u uy"”) du”’} (2.19)
U , ), @ Jo > Uy 1 :
Proof Let dpa(u,u,) € Im D. Then

(Au, + B)“(S—Z—D(%’)) + c(%% —D(E?—;l)) = Df(u,u,)

or

2 Pe_ a0

du,
S (cdal_ 3 1 da -3 (da_a
Bu(cauf) du, | Au, au%_*—cau(au] ul)j|

This system of equations for determining a(u,u;) is equivalent to the
system

B d%a i(a_a £)7 3y, da

du, a_uf

=g (220

Condition (2.17) is the compatibility condition of the system (2.20).
When it is satisfied the general solution of (2.20) is written in the form

a(u,u)) = c,d+ Dh(u) + c,, e EC,

where we denote by 4 the right side of formula (2.19).
K
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Lemma 2.3 allows us to construct equations satisfying the condition
(2.1), with an arbitrary function a(u,u,) as the density in the conser-
vation law. The coefficients of this equation of the form (2.5) are
expressed in terms of the function a(w,u,) by means of formulas
(2.20), (2.18) and the condition (2.1). The last, because of the unique-
ness of the conservation law, gives

aF -2 Au,+ B
a=(a—uz) =2 = f(w,u)) + 6 a(u,u)) + N1 = 8)

/-4

where § =0, 1, A € C. As the equation for determining the function f,
and also the coefficients 4, B, we have the first of the relations (2.20):

a a ’
a”ula—{: + (ay— aloul)a—jl +[8a + A1~ 8)]511[ =0 (2207

Here and in the sequel a, = da/du, a,y = 9°a/dudu,, a;, = d%a/dul.
Assuming that the function f is known from (2.21) (this equation is
integrated by quadratures), we can find the last coefficient C(u,u,) by
solving Eq. (2.18), whose left side is connected with the density
a(u,u,), by the second of formulas (2.20). Thus, for § = A = 0 we get
the equation

u=—(f£;Df) "+ C(u,uy) o
a
ayg Zl—(l)*”‘111“1%_(‘Zloui“ao)aiuI C(u,uy)

_ 2ay, fi a a)

n fa

For any function a(uw,u,), da/du, = 0, this equation satisfies, surpris-
ingly, not only the condition (2.1), but also the conditions (2.2), (2.3).
Condition (2.2) is equivalent to (2.17), while condition (2.3) is satisfied
automatically.

For 6§ =0, A # 0, condition (2.2) is stronger than (2.17), which
enables us to sharpen the form of the solution C(u,u,) of Eq. (2.18).
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This gives
1
u = — + C(u,u
' Si(fiug + foug + ) (14) (2.22)
_fau fu 1
C=\"" 2L - ”l+—)+aau—au, aeC
( ay fy fi i (e s
Equation (2.22) automatically satisfies condition (2.3).
y
The case of § = 1 is analogous to the preceding one. We have
u = —f"'(Df + a)_l-’r C(u,uy)
(2.23)
ap apui + pfiu, Sy = /)

Clwu)= - ay(ayu, — a)f, fl(alul_a)2 fawm = a)

Condition (2.2) is used to sharpen the form of the solution of Eqg.
(2.18). Condition (2.3) is satisfied automatically.

Equations (2.21)—(2.23) exhaust the list of Egs. (2.5) with nontrivial
conservation law, satisfying the conditions (2.1)—(2.3). There remains
to enumerate equations without conservation laws, for which the
conditions (2.1)—(2.3) are satisfied in a stronger formulation. Condi-
tion (2.1) goes over into the condition

Au, + B
o= ———= Df(u,u;) +A, AeEC

Vv— A
The next condition «f8 € Im D + C leads to an overdetermined sys-
tem of equations for determining the coefficient C(u,u,) of Eq. (2.5).
The condition for compatibility of this system is expressed in the form
of an equation for determining the function g(u,u,):

+2 fou;:u—1 fo _5 fljlrlzfo

A J _ 9 i
|:u_l+flu!$ (fou, +A) aul}g u,

(2.24)

gdé‘[fo i = o+ 0) 4 }C(u,uo —f7n (@29)
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The first of these equations enables us to find g in terms of the
derivatives f,=0f/0u, fy, = 8’f/0udu,, ..., of the function f, the
second serves to determine the coefficient C(u,u,).

For A =0, the equation

u=—f (DAY "+ C(uu) (2.26)

automatically satisfies the conditions (2.3), (2.4) for an arbitrary

choice of the solution C(u,u,), of Eq. (2.25). The requirement of

absence of conservation laws imposes the restriction p 0 on the

right side of Eq. (2.24). For p = 0 Eq. (2.26) coincides with Eq. (2.21).
For A # 0, the equation

u, = —fT(DF+ A+ Cu,u)) (2.27)

with an arbitrary choice of the solution C(u,u,) of Eq. (2.25) satisfies
condition (2.2), but does not satisfy condition (2.3). Condition (2.3)
leads to an ordinary differential equation for determining C(u, u)):

2 2
filuy! 2>\aiu]+f1(u—>xg) C+ J:“ _g7+ 28 4 8

Sfiu, u, f f - h

(2.28)

For arbitrary p, € C the solution of (2.28) is a solution of (2.25).
Condition (2.4) is satisfied automatically. The criterion for existence
of a nontrivial conservation law selects the particular solution

= — oy ok
Cluu) = =@ g+ ()= S5

of Eq. (2.25). This function satisfies (2.28) for p, + A%~ 'u? = 0. If
this relation between the parameters A, p, u, is violated, Eq. (2.27)
with the function C(u,u,) from (2.28) has only trivial conservation
laws.
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2.2 Classification of equations u, = F(u,u;,u,y,us), 0F/0uy = const
For the equation
U, = us + g(u,uy, 1) (2.29)
the first of conditions (1.10) with label £k = —1 is satisfied automati-
cally, since dF/du, = 1. The next two conditions (k = 0,1) become

explicit (cf. the Corollary to Theorem 1.9), i.e., they are expressed
directly in terms of the right side of Eqs. (2.29):

def
depo €EImD,  py=g,=0g/0u, (2.30)

depy EIm D, pi=3g8 (231

Here and in the following, g, = 9g/0u;, g, = dg/0u. For k = 2,3, the
conditions (1.10) can be written in the form

0py €ImD,  py=27gy— 98,8+ 28 +9D 058, (232)
dpy EImD,  py=D7'3,(3g — &) (233)

Equation (2.29), unlike second order equations, can have an infinite
series of conservation laws. By considering the chain of equations
(1.16) and sharpening the arguments used in the derivation of condi-
tions (1.17), (1.18), one can prove the following assertion.

LemMma 2.4 For Eq. (2.29), the density p of the conservation law of
order n > 2 admits the representation

p=o(u ... ,u,,_l)u3+ YU, oy U, y)

From the existence of a conservation law of second (third) order, it
follows that (cf. (2.30), (2.32)) py €EImD (p, €EIm D, p, EImD +
C), respectively.

From Lemma (2.4) it follows that the order of the conservation law
(2.30) with density p, = g, cannot be equal to two. Therefore

& =p(w,uy) + Df(u,uy) (2.34)
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Using (2.34), the density of the conservation law (2.32) can be written
in the form

PZ:(fIII =2fifu+3 f)ug+(p(u,u,)u§+4/(u,ul)+1ml)

Returning to Lemma 2.4, we find that the coefficient of 3 is equal to
zero. This gives

fin = 2fifu +%f135(D _%fl)zfl =0
fu,u) = — %ln[a(u)uf + B(u)u, + y(u)]

A check of the cases a #0; a =0, § # 0; a = =0, leads, by virtue
of (2.34) to a sharpening of the form of Eq. (2.28):

[u, + c(u)]us

3
U= Uy — = +A(u,u))u, + h(u,u,);  (2.35
2 [u1+a(u)]2+b(u) ()t () (2:3)
3 1
U = Uy — Z 1[l+—a(u) +A(u,u1)u2 + h(u’ul); (236)
U =uy+ A(u,u))uy + h(u,u,) (2.37)

Further specification of the form of the night side is done individually
for each of these three cases.

For equations of the form (2.37), we find from condition (2.30) that
the function 4 depends on u, linearly. Therefore, by making the
invertible substitution u<> @(u) equations of this type are reduced
either to the equation

U, = u3 + Auy + h(u,uy), AEC, (2.37)
or the equation
u, = uy + c(u)uy + h(u,u)), ¢ #0. (2.377)
For Eq. (2.37') the conditions (2.31), (2.32) mean that

dgh, € ImD, dphy € Im D
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This permits us to sharpen the form of the function %(u,u,). From
condition (2.33) we find that A =0. As a result we arrive at the
following list of equations of the form (2.37"):

U, = uy + (oaw® + Bu+ y)u, (2.38)
U, =uy + ou; + Bui + yu, + 8 (2.39)
U = uy— Yui + (e’ + Be” " + y)u, (2.40)

Here «, 8,v,8 € C.
For Eq. (2.37”) condition (2.30) enables us to sharpen the form of
the function h(u,u,):

h= ulz(ZC’2 +2¢"c — c’”ul)(2c’)_]+ d(u)u,

The form of the functions ¢(u),d(u) is found from conditions (2.31)
and (2.32). As a result we get the following two equations:

3 3,2 43,42
= Uy + sul, + suy +juu + au

&
!

U = uy + 1u, + Suul + Lutu, + au,

Both of these equations are reduced to the linear equation u; = u} +
auy by a differential substitution of the form (1.33)—the first by the
substitution that linearizes the Burgers equation (cf. the Introduction),
the second by the substitution given in Example 1.21.

Equations of the form (2.37) admit an exhaustive classification. To
within a substitution (1.33), any of these equations is equivalent
either to the linear equation mentioned above, or to the Korteweg—
deVries equation u, = uj + «'u} + yu|. Some quite well known equa-
tions (2.38)-(2.40) (cf. for example, [2], [16]) belong to the second
type. The explicit form of the substitution u' = @(u,u,,u,) is also
determined as in Example 1.20.

For an equation of the form (2.36) the substitution u <> @(u) allows
us to assume that a(u) = 1 or 0. Omitting the quite tiresome running
through of the cases that arise here, we give the final answer. For
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a(u) = 0 there are two equations, satisfying conditions (2.30)—(2.33):

u
u,=u3—% f%—au (2.41)
1
2
u
U, = Uy — % u—2 +oui/? + But +y (2.42)
1

The case a(u) = 1 gives four equations. One of them was given in the
Introduction as Eq. (0.11). The remaining three have the following
forms:

u == 3 ulujz_ s a1 Bl 4, (2.43)
3 1 1 3
u,=u3—zul+l+(u1+1)u2+§(ul+l)+(x, (2.44)
_ 3 4 2 1 .
U= uy— g — = 3uy(u, + 1) Tum " = 3uy(uy + Du
— 6uy(uy + 1) 0™ 4 3uy(uy + D)(uy + 2)u™? (2.45)

At first glance the difference in the numerical coefficients (—3/2)
in (2.35) and (—3/4) in (2.36) appears insignificant. However, from
formulas (2.34) and (2.33) it follows that

P3=(f|1 _%flz)u:%‘*' @(w,upuy) +ImD

For Eq. (2.35), in contrast to Egs. (2.36), (2.37), the coefficient
fiy—2f2/3 of u? is not equal to zero: From this and Lemma 2.4 it
follows that in the case of (2.35) conservation laws (2.30), (2.32) are
trivial. In fact, in the present case the condition (2.33) signifies the
existence of a conservation law of order three, which is also required
in the conditions of Lemma 2.4. The triviality of the conservation
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laws (2.30), (2.32) is used essentially in the classification of equations
of the form (2.35).

Setting @ =0 in (2.35) (cf. the case of (2.36)), we can, by a
substitution u <> @(u) change b(u) to zero or one. The case a = b =0
gives two equations:

u=u;— duwu '+ au] '+ B (2.46)

u=uy— 3udul + au] ' = 3P (u)u) (2.47)

1

where (2 =42+ ¢, P + ¢,, ¢, EC. The case of a=0, b=1
gives the following two equations:

2
3 wu 3/2
w=uy 5 u12[+21 +o(uf + 1)+ Buj +y (2.48)
2
_ 3 (ul + 1)u2 3 3
U, =ty — 5 ﬁ - Eﬁ(u)(u, + u[) (249)

Two more equations are obtained for a = 1:
U, = Uy — %u%(u[ + 1)_1 +oo(u, + 1)_' + B(u, + 1)3 + v (2.50)

2
3 (ul+l)u2 > 3/2 3
Uy=u—> —————— + B (uy, + )+« +y(u, + 1)y +6
72 i+ Y +a ISR (*h

(2.51)

The seventeen equations enumerated exhaust the list of equations
(2.29) satisfying the conditions (2.30)-(2.33). For equations of the
form (2.35), (2.36), in contrast to equations of the form (2.37), the
classification has not been carried to completion. It is not clear, for
example, whether Eq. (1.8) is solvable for any choice of constants in
(2.41)-(2.51). We give below model equations of the form (2.35),
(2.36) and show differential substitutions relating them to the general-
ized Korteweg—deVries equation and the linear equation, respectively.
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The solvability of (1.8) for the model equations follows from Lemma
1.22:

wmuy 3 (u, + N)u3 )
' 2(u[+K)2+a

u'=ln{u[ +>\+m}, W=y — ()%

[

(2.52)

. W =Vu A, w=u (253)

Simplified variants of Egs. (2.52), (2.53) were considered in the
Introduction (Eq. (0.9)) and in Example 1.20.

It should be mentioned that Eq. (2.47) arose first in the work of
S. P. Novikov and I. M. Krichever in connection with the Kadom-
tsev—Petriashvili equation (cf. [16]). Equation (2.49) is a different form
of the equation

(4 + u— 2143)2

— 6u?
>\—4(u[2+u2—u4) “ih

u, = uy + 6u,

found by F. Calogero and A. Degasperis (cf. [17]). The case of
degeneracy # = u~? was omitted in [17]. The value A =1 corre-
sponds to trigonometric degeneracy of the Weierstrass function.

§3 Discrete Evolution Equations

In this Section we consider infinite dynamical systems of the form
(0.12). Emphasizing the analogy to the case of differential equations
(0.1), we make systematic use of the notation of §1: the dynamical
variables are denoted by u, = D*u, k € Z; ¥ denotes the algebra of
functions depending on a finite set of the dynamical variables;
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F ((D ")) is the algebra of formal series of the form

n

L= > aD, a¢q€F

{
I=—0c0

etc. We should remember that, unlike the case for differential equa-
tions, in this Section D denotes the shift operator, acting in &
according to the formula

D't f(uye sty oo s ) (Ui Uiy -+ - Ur)-

3.1 Conservation laws and conditions for solvability of
operator equations

A discrete evolution equation of the form (0.12) generates a derivation
dp: F > F, taking u into F and commuting with D. The derivation

dr acts on any function f(u,, . .., u) according to the formula
def L df
ORIV

The function p € & is called the density for the conservation law for
Eq. (0.12) if the condition

dp(p) EIm(1— D)

is satisfied. The variational derivative g = 8p/8u of the density of the
conservation law satisfies (cf. the derivation of formula (1.13)) the
equation

(3 + Fi)g=0 (3.1)

Formulas for the variational derivative and the operation of taking
the formal adjoint in the discrete case have the following form:

8p def to 9 rdef

i > a—uD’(p), (zaiD") =>D "ea (32)

1= —00
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From (3.2) it follows that the variational derivative g = 8p/8u satis-
fies the condition

(8+)'= &«

Therefore the function g has the form g=g(u_,,...,u,), 9g/du_,
#0, 9g/0u,#0. We shall call the number n the order of the
conservation law with density p.

Lemma 3.1 If the equation u, = F(u_, ,t_,.pyy ..., U,), m>
— m’ has a conservation law of order n > max(m,m’), then m’ = m.

Proof Applying the operation * to (3.1), we find (cf. (1.14)) that

k
(8F+Fi)g*—g*(8F—F*)= > aD' (3.3)

i=—o0

where k < max(m,m’). Comparing the leading coefficients in (3.3), we
obtain the assertion of the Lemma.
As in §1.3, the relation (3.3) leads to the operator equation

0p(S)+ FuS+ SF,=0 (3.4)
Since in the discrete case D and D ~! are on an equal footing, we
should investigate the solvability of (3.4) both in % ((D ™)) and in
Z ((D)). However, if S € % ((D ")) is a solution of Eq. (3.4), then,
as is easily seen, S' € .7 (D)) is also a solution. Therefore it is
sufficient to consider the set é(F) of solutions of (3.3) from
F((D™"). Just as in §1 (cf. Lemma 1.10) one verifies that two
different operators S, S, in é(F) generate the operator L = §, 'S, in
A(F), ie., a solution in .% ((D ") of the equation

[0y = Fy,L]=0 (3.5)

Example 3.2 Consider the equation

U =u(u, —u_)) (3.6)

1

which is the discrete analog of the Korteweg—deVries equation (0.6).
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It is not difficult to check that the operators S, §,, where
S ' = uDu — (uDu)’,

S, ' = uDuDu + uDu* + u’Du — (uDuDu + uDu* + uzDu)I

are solutions of (3.4). Therefore the operator
L=S,'S = u[ulD +ouy+u+ (u) - u_,)D_z(l - D_')_l}u_l

3.7)

satisfies relation (3.5).
Just as in the case of differential equations, the first-order operator
L € A(F) generates a series of conservation laws

dp(resL*)y € Im(1 — D), k=N (3.8)
where
resZa,Diifao (3.9)
This follows from the relation
res[ P, Q] €EIm(1 - D)

valid for any P, Q € & (D ~")). The proof of this relation is analo-
gous to the proof of Lemma 1.8.

Example 3.2 (continuation) One can show (cf. [7]) that, in the case
of (3.7), the conservation laws (3.8) with densities p, = res L*, are

nontrivial for all k =1,2,3, ..., and that the density for any conser-
vation law of Eq. (3.6) is a linear combination of the densities p,,
k=0,1,2,..., where p,=Inu. Moreover, one verifies that for

k > 1, the functions p,,8p,/8u are homogeneous polynomials of
degree k,k — 1. For example,

=resl?=u+3uu+ 1w+ uu, = 2u*+4uu, + Im(1 — D
P> | 1 1My 1

6py/0u=4(u+ u_, + u))
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In general a conservation law for Eq. (3.6) with density p, has order
k—1

We recall that, for the differential analog (0.6) of Eq. (3.6), conser-
vation laws of the form (3.8) with even index are trivial because of
Theorem 1.13.

The essential difference of discrete equations manifests itself in the
question of minimal positive order of operators in AA(F),B(F). By
virtue of Theorem 1.12, in the differential case there exist operators in
/f(F),B%F) of first order. The analog of Theorem 1.12 in the discrete
case is

THeorEM 3.3  Let us assume that Eq. (0.12) has an infinite series
of conservation laws of orders k|, k,, k5, . . ., satisfying the condition

0<k, —k <N.

Then there exist operators L € ff(F) and § € é(F) whose orders N’
and N”, respectively, do not exceed the number N.

Abbreviated proof We can choose N',N” €N and a subsequence
of orders k; ,k;, ..., such that

ki, = ki =ki,—ki,=--- =N, k,}_=N” (mod N')

Just as in Theorem 1.12 one verifies that for any / there exist
operators L, € AA,, YIS é,, of orders N and N”, respectively. The
existence of operators L & AA(F) and § &€ ﬁ(F) of orders N and N”
follows from considerations analogous to the proof of Theorem 1.7.

We denote by G the set of all monomials of the form aD*, where
a€F, k€Z Tt is clear that G is a group under multiplication.
Consider the problem of the structure of the centralizer [g] of an
arbitrary element g € G. We call the rank of [ g] the smallest positive
order of elements of [ g].

LemMa 3.4 Suppose that the rank of [ g] is r. Then
[g]={cg . cECiEZ)

where g, is an arbitrary element of [ g] with order r.

Proof We denote by { the set of orders of elements of [ g]. Since
[g] is a subgroup of the group G, the set £ is a subgroup in Z and,
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consequently, & = rZ, where r is the rank [g]. We verify that for
a,D*,a,D* €[ g], the relation «, = ca,, ¢ € C is valid. Suppose that
g=aD"; then

aD"a,-Dk = oz,-DkaD”@aD"(a,) = a,-Dk(a), =12
Eliminating a, we find
D"(a;/ay) = o/ 0y= «; /oty = const
If aD* €[ g], then k = rk,. The operators aD* and g/ have the same
order and belong to [g]. Therefore aD* = cgf1.
COROLLARY TO LEMMA 3.4 If [ fD™, aD "] = 0, then there exists a
monomial «D 9 such that

fD™ = ¢\ (aD?)",  aD" = cy(aDT)" (3.10)

In particular, if [aD",bD"] = 0, then a/b = const.

ProposITION 3.5 Suppose that r is the smallest positive order of
the operators L of A(F). Then

A‘(F)={ > c,.L;‘,c,eC,nez}
i=—00

where L, is an arbitrary element of /f(F) of order r.

Proof Suppose that L is an operator of order k in /f(F) and
L=aD*+a_ D'+ .., F,=FD"+F D" '+ ...

where F,.d=ef8F/au,.. From relation (3.5) it follows that [a, D*, F, D™]
= 0. Applying Lemma 3.4, we conclude that the leading coefficients
of the operators L,, L, € 4 (F) are proportional, if ord L, =ordL,.

We denote by £ the set of orders of operators in /f(F). Since ff(F)
Is a group under multiplication, Q = rZ. Subtracting from L &€ /f(F)
the operator ¢L*/", we can lower the order of L. Continuing this
process we arrive at the decomposition L = 3¢, L.
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From the proof of Proposition 3.5 it is obvious that the leading
monomials @, D* of the operators in AA(F) form a subgroup of the
commutative group [F,D"™] C G (the commutativity of the centralizer
follows from Lemma 3.4). It is clear that the following assertion is
valid.

ProrosiTiON 3.6 The rank of the centralizer [F,,D™], Fmdzef
9F/du,, is a divisor of rank of /f(F) (i.e., the smallest positive rank
of operators in A(F)).

Because of Lemma 3.1, the discrete evolution equation having

conservation laws of sufficiently high order is expressed in the form

u=F(u_, ,u_, ..., 4,), F_, -F, #0 (3.11)
We shall call the number m of the order of Eq. (3.11). For the
equations (3.11) known to the authors, having a nontrivial algebra
ff(F), the rank of AA(F) 1s always a divisor of m. An example of a
discrete equation for which the rank of ff(F) 1s equal to the order of
the equation 1s the following generalization of (3.6):

u, = u(u, — u_m)

obtained by the substitution ;= u,, . It i1s clear that the operator of

order m, obtained from (3.7) by the replacement u,—> 4, , D'— D™,
belongs to A(F). On the other hand, the rank of the centralizer [ g],
g=F,D"=uD" is m. Using Proposition 3.6 we find that the rank

of AA(F) equals m.

Remark 1In the case of differential equations, for which the opera-
tor LEAA(F) is of order n, there existed the operator L'/" also
belonging to AA(F), so that the rank of AA(F) was always equal to
unity.

Let us consider the question of the conditions for solvability of the
operator equation (3.5). In the differential case the first of the
solvability conditions was formulated (cf. (1.10)) in terms of res L™
There is no discrete analog of this condition, since in the discrete case,
because of the definition (3.9), res L™' = 0. Let us derive the condi-
tion analogous to the second of the conditions (1.10).
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ProrosITION 3.7 From the solvability of Eq. (3.5) it follows that
the condition

aF(lng’TF) €Im(l - D) (3.12)

m

is satisfied.

Proof From Eq. (3.5) we find that

res(L™'9(L)) =res(L™'F,L — Fy)

=res| L7'F, L] €Im(1 - D)

Suppose that L =3S"___aD’; then with F,, =93F/0u,, we have,
because of Lemma 3.4:
[a,D",F,,D"]=0=a,D" = c(aD?)",  F,D" = c,(aD?)"

where g is the greatest common divisor of the orders n and m. Then

n—1

res(L™'0x(L)) =a, '37a,= > D(a”'3za)
=0

m—1

F,'9x(F,) = .20 D (a™'3,a)
Noting that Vf, g € ¥
f+D(g)EIm(l-D)ysf+gelm(l - D) (3.13)
we get
a,'9za,€Im(l - D)=a '3« €Im(l — D)
= F, '9,F, €lm(l - D)

In the discrete case, as in the differential case, from the solvability
of (3.5) it follows that the equation under consideration has a series of
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conservation laws (3.8). However, conditions (3.12) and (3.8) do not
exhaust, even in the case when the rank of AA(F) is unity, the list of
solvability conditions. In fact, from Proposition 3.6 and Lemma 3.4 it
follows that

F D™= D’ m/r 1 D,‘Fm__l
m =(aD" )" '=In 7 =In

nm

D:(x Elm(l _ Dm)

where r does not exceed the rank of ff(F), the order m of the
equation and, generally speaking, r < m. Since Kerd/éu = Im(l —
D) + C, the condition

r

lDF'"EI 1—D"
n 7 m( )

m

implies the relation

+ oo a o DrFm B
k=2_00 a—u D ln F—m = 0
It is not difficult to verify that this condition is by no means fulfilled
for all functions F,, € % . For example, if F,, = F,(u), r=1, this
condition is fulfilled if and only if m = 1.

Let us consider the solvability conditions of the operator equation
(3.4). As mentioned in the proof of Lemma 3.1, from the solvability of
(3.4) it follows that the discrete equation has the form (3.11). Suppose
that S = aD” + - - - . Equating the coefficients of D”*” in (3.4), we

get
D" "nF, —In(—F_,)=(1-D"")na (3.14)

Weakening it, we can make condition (3.14) independent of the order
n of the operator S. Noting that (1 = D "")lna € Im(1 — D) and
using (3.13) we get

In(—F,/F_,)€Im(l - D) (3.15)

The conditions (3.14) and (3.15) are equivalent for m = 1.
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Let us find still another form of the condition for solvability of Eq.
(3.4), analogous to the condition (3.12). Because of (3.4),

I(S)S™'+ Fu+ SF,S™'=0

Then
res Iy + res Fy +1es(3(S)S ') € Im(1 — D)
or
298 49 naeIm(1 - D) (3.16)

where « is the leading coefficient of the operator S.

3.2 Classification of equations u, = F(u_,u,u,)

In this Section we consider discrete evolution equations of the form
(3.11) with m = 1, satisfying conditions (3.12), (3.15), (3.16). Sharpen-
ing the arguments of §3.1, we can verify that for m = 1 these condi-
tions are satisfied for any equation (3.1) for which there exists a
conservation law of order greater than two and an evolution deriva-
tion af such that [d,,0¢] = 0, ord f4 > 2. The presentation is based on
the work of R. I. Yamilov.

For m = 1 the class of Egs. (3.11) satisfying condition (3.15) can be
described as follows.

LemMma 3.8  The function F(u_,u,u,) satisfies (3.15) if and only if
it can be represented in the form F = ¢(u,y), where the function
Y (u_,,u,u,) satisfies the symmetry condition

o4 p( 24 )

du, ou_,

Proof Suppose that condition (3.15) is satisfied. Then there exists
a function ¢ € ¥ such that

aF

—1, \ OF
P +D (@)= =0 (3.18)

duy
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The dependence of ¢ on u_,u,,, k > 1 contradicts the structure of
relation (3.18) and, consequently, ¢ = @(u,u,). It is not difficujt to
verify that a particular solution of the partial differential equation
(3.18) is the function

1,l/(u_[,u,ul)=f<pdul—fD"'(qa)du_, (3.19)

satisfying (3.17). The required relation F = ¢(u,y) follows from the
formula for the general solution of Eq. (3.18).

Suppose that F = ¢(u,y), where y(u_,,u,u,) satisfies (3.17). It is
not hard to show that functions satisfying (3.17) are expressible in the
form

v=2(1-D ") (wu) (3.20)
and that condition (3.18) for F = ¢(u,{) is satisfied with ¢ =
0% /0udu,.

Remark 1t is easily checked that condition (3.17) can be rewritten
in the form y,= — 4 + 29y /du. The connection of condition (3.17)
with the condition f, = f, characterizing functions representable in
the form of a variational derivative (3.2), becomes obvious if we
compare formula (3.20) with the formula:

o _ 0 -1
Ef(u,ul) = —a—u(l + D7) f(u,uy)

In view of Lemma 3.8, the equation satisfying condition (3.15) can
be written in the form

w=g(uy), U= (1= D7) () (321

We specify the character of the dependence of the function @ on ¢ in
(3.21) by means of the condition (3.12):

aF(ln S—MF) —3p(Ing’) + d,(Iny) €Im(1 — D) (3.22)

1

where ¢’ = 3g /3y, ¥, = 0y /du,.
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ProprosITION 3.9  Suppose that Eq. (3.21) satisfies condition (3.22).
Then

aa—;2 Ing'(w,y) =Ag'(w,y), AEC (3.23)

and the condition A # 0 is the criterion for the existence for Eq. (3.21)
of a conservation law of second order.

Proof By virtue of (3.22) Eq. (3.21) has a conservation law of
order 0, 1 or 2 (the order of the conservation law was determined
before Lemma 3.1). In the contrary case the conservation law
(3.22) is trivial, ie., 3F/3u, = (1 — D ~Yg(u,u,). The density f=
flu_,,u_y, ..., u,) of an arbitrary conservation law of order k& < 2 is
expressed in the form

f=pi(u_g,u_u)+ py(u_uuy) + py(u,uy,uy)
=p2+Dpy+ D7 py+ (1= D)py+ (1 =D Hps

Consequently f= p(u,u;,u_,) modulo Im(l — D). Change from the
variables u, u,u_, to variables u,u,y(u_,u,u,) and set p(u,u,u_;)
= p(u, uy,¢). Using the symmetry property (3.17) we find

S o fi = [ D, (91 T/ 097 + 80 /bu, 04) DD

The left side is equal to zero, since f, € Im(l — D). Equating the
commutator on the right to zero, (cf. the Corollary to Lemma 3.4)
leads to the relation

0% /0y + Y 0% /0u, 0y = A¢’ (3.24)

Equation (3.23) is obtained as the result of substitution in (3.24) of
the density for the conservation law (3.22). For A =0 the general
solution of Eq. (3.24) is expressed by the formula

0 =p1(u,ul) + po(u_y,u)

Consequently, the order of the conservation laws in this case cannot
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be equal to two. Conversely, for A #0 Eq. (3.24) has no solutions
corresponding to conservation laws of order k = 0,1 and, therefore,
the order of the conservation law (3.22) is equal to two.

Let us discuss briefly the relation between the last condition (3.16)
and condition (3.22). One can check that for Eq. (3.21) when condi-
tions (3.14), (3.22) are satisfied, condition (3.16) is equivalent to the
following:

) OF

5. t8rnpelm(l-D) (3.25)

Here F and ¢ are related by Eq. (3.18). The relation between the
conditions (3.22), (3.25) depends essentially on the specific form of
the function @(u,y) satisfying Eq. (3.23). For example, for ¢ = ¢~ ',
after analysis it becomes clear that condition (3.22) and (3.25) are
equivalent. We consider below the simplest case, ¢ = . We first note
that conditions (3.18), (3.22), (3.25) are invariant under point transfor-
mations u<> [g(u)du, and that the formulas

3

Logu)l,  FogF  gogD(ge,  vog
du, ouy,

allow us to rewrite these conditions in invariant terms.

Lemma 3.10 For the equation

u = g2(u)1j/(u_l,u,ul) (3.26)

a criterion for equivalence of conditions (3.22) and (3.25) is the
relation

g(1) L (g(u)) €Im(1 - D) (3:27)

Proof For g=1, ie, F=4, in condition (3.18), it follows that
@ = 9y/du,. Comparing (3.22), (3.25) we get (3.27). The general
case reduces to that considered above by the point transformation
ue [g(u)du.

From the point of view of classification, a distinguished case is that
of equations having conservation laws of zeroth order (cf. §2.1).
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ProposiTioN 3.11  The equation u, = F(u_,,u,u;), having a con-
servation law of zero order and satisfying conditions (3.18), (3.22),
(3.29), 1s equivalent, up to the group of point transformations, to one
of the following two equations:

u, = (au2 + Bu+ v)(uy —u_y) (3.28)

u, = (au4 + Bu’ + y)( ” L i +1u ) (3.29)
1 —1

Here «, B,y € C.

Proof Suppose that p(u) is the density of a conservation law; then
p'(w)F = (1 — D~ "g(u,u,). Because of (3.18) we have

_, og _if _,0g
1 %8 _ I 1 98
L (‘P au)

From this, setting ¢ ~'dg/du, = [h(u)du, we find
g(ww) = fLA() + h(u)].
After the substitution u <> h(u) we obtain
u, = a(u)| flu+u)—flu_, +u)] (3.30)

Formula (3.30) determines the general form of equations that have
a conservation law of zero order and satisfy the condition (3.18). The
conservation law (3.22) enables us to specify the form of the function
f on the right side of Eq. (3.30). For density p(u,u,) of an arbitrary
conservation law of order no higher than one, following the derivation
of (3.24), we find

3% /0uduy = 2pf'(u + uy), pecC
Substitution in this of the density of the conservation law (3.22) gives
fr=ufr+ef+8 (3.31)

From (3.31) it follows that Eq. (3.30) is brought by a point transfor-
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mation to the form
u = a(u)(u, —u_,) (3.28")

for u =0, while for u 7= 0 it takes the form

1 1 ’
= — 3.2
u = a(u) wtu utu_, (3299

For example, as is easily checked, the equation
u, = a(u)[cth(ul + u) — cth(u + u_l)]

corresponding the case of p % 0, €* = 4,75, reduces to the form (3.29")
under the substitution u <> cthu.
For Eq. (3.28'), the condition (3.27) gives

a'(uyu, — a'(uyu_,

= a'(uyu, — a'(u)u — (1= D){a'(wyu_} €Im(1 - D)
From this we find

a'(uyu; — a'(u)u = (1 - D)p(u)=a"(u)=a"(u,)

and, consequently, a” = const, a(u) = au®* + fu + y.
Analogously, for Eq. (3.29") it follows from (3.27) that

12[a(u)) — a(u)] — 6[ a'(u)) — a'(u) |(u_, + u)
+ [a”(ul) — a”(u)](ul + u)2= 0

Then we obtain d“a/du®= const, and thus a(u) = au®+ Bu®+ v.
Fulfillment of conditions (3.22), (3.25) for Egs. (3.28), (3.29) can be
verified directly.

Returning to Proposition 3.9, we give the general form of Egs.
(3.21), satisfying condition (3.23). We here take into account the
nonuniqueness of the choice of the function ¢ in (3.21), related to the
gauge transformation = + g(w), which is allowed by condition
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(3.17). For A = 0, Eq. (3.23) gives, as a complement to (3.30),

u, = g(u)[exp{ g(u)y) + p(u)] (332)
For A # 0 we get two more equations:
u =y '+ pgu), peC (3.33)

u, = g(u)[th{ g(u)y} + p(u)] (3.34)

A complete list of Egs. (3.21), satisfying conditions (3.22), (3.25) has
at present been obtained only for A = 0. In addition to Egs. (3.28),
(3.29) this list contains the two equations:

1

u— u

1
= (o + pu’ + yu* + 8u+e)( + u_l_u) (3.35)

u=g(u —uwyg(u—u)+e g=og+ B+ yg_l (3.36)

Equation (3.35) is, roughly speaking, a generalization of Eq. (3.29),
and for 8 = § = 0 reduces to Eq. (3.29) under the invertible transfor-
mation

uk<—>(—1)/‘u_k, k=0 =%1,...

Equation (3.36) is unique up to the group of point transformations in
the class of Egs. (3.32), and reduces to Eq. (3.28) under the substitu-
tion u’ = g(u; — u). This substitution is a characteristic example of
discrete analogs of the differential substitutions that were considered
in §1.4.

Examples of equations of the form (3.33) and (3.34) are Eqs. (0.13)
and (0.14), respectively.
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